mirror of
https://github.com/open-mmlab/mmclassification.git
synced 2025-06-03 21:53:55 +08:00
* add asymmetric loss * minor change * fix docstring * do not apply sum over classes and fix docstring * fix docstring * fix weight shape * fix weight shape * add reference * fix linkting issue Co-authored-by: Y. Xiong <xiongyuxy@gmail.com>
86 lines
2.5 KiB
Python
86 lines
2.5 KiB
Python
import torch
|
|
|
|
from mmcls.models import build_loss
|
|
|
|
|
|
def test_asymmetric_loss():
|
|
# test asymmetric_loss
|
|
cls_score = torch.Tensor([[5, -5, 0], [5, -5, 0]])
|
|
label = torch.Tensor([[1, 0, 1], [0, 1, 0]])
|
|
weight = torch.tensor([0.5, 0.5])
|
|
|
|
loss_cfg = dict(
|
|
type='AsymmetricLoss',
|
|
gamma_pos=1.0,
|
|
gamma_neg=4.0,
|
|
clip=0.05,
|
|
reduction='mean',
|
|
loss_weight=1.0)
|
|
loss = build_loss(loss_cfg)
|
|
assert torch.allclose(loss(cls_score, label), torch.tensor(3.80845 / 3))
|
|
|
|
# test asymmetric_loss with weight
|
|
assert torch.allclose(
|
|
loss(cls_score, label, weight=weight), torch.tensor(3.80845 / 6))
|
|
|
|
# test asymmetric_loss without clip
|
|
loss_cfg = dict(
|
|
type='AsymmetricLoss',
|
|
gamma_pos=1.0,
|
|
gamma_neg=4.0,
|
|
clip=None,
|
|
reduction='mean',
|
|
loss_weight=1.0)
|
|
loss = build_loss(loss_cfg)
|
|
assert torch.allclose(loss(cls_score, label), torch.tensor(5.1186 / 3))
|
|
|
|
|
|
def test_cross_entropy_loss():
|
|
|
|
# test ce_loss
|
|
cls_score = torch.Tensor([[100, -100]])
|
|
label = torch.Tensor([1]).long()
|
|
weight = torch.tensor(0.5)
|
|
|
|
loss_cfg = dict(type='CrossEntropyLoss', reduction='mean', loss_weight=1.0)
|
|
loss = build_loss(loss_cfg)
|
|
assert torch.allclose(loss(cls_score, label), torch.tensor(200.))
|
|
# test ce_loss with weight
|
|
assert torch.allclose(
|
|
loss(cls_score, label, weight=weight), torch.tensor(100.))
|
|
|
|
# test bce_loss
|
|
cls_score = torch.Tensor([[100, -100], [100, -100]])
|
|
label = torch.Tensor([[1, 0], [0, 1]])
|
|
weight = torch.Tensor([0.5, 0.5])
|
|
|
|
loss_cfg = dict(
|
|
type='CrossEntropyLoss',
|
|
use_sigmoid=True,
|
|
reduction='mean',
|
|
loss_weight=1.0)
|
|
loss = build_loss(loss_cfg)
|
|
assert torch.allclose(loss(cls_score, label), torch.tensor(50.))
|
|
# test ce_loss with weight
|
|
assert torch.allclose(
|
|
loss(cls_score, label, weight=weight), torch.tensor(25.))
|
|
|
|
|
|
def test_focal_loss():
|
|
# test focal_loss
|
|
cls_score = torch.Tensor([[5, -5, 0], [5, -5, 0]])
|
|
label = torch.Tensor([[1, 0, 1], [0, 1, 0]])
|
|
weight = torch.tensor([0.5, 0.5])
|
|
|
|
loss_cfg = dict(
|
|
type='FocalLoss',
|
|
gamma=2.0,
|
|
alpha=0.25,
|
|
reduction='mean',
|
|
loss_weight=1.0)
|
|
loss = build_loss(loss_cfg)
|
|
assert torch.allclose(loss(cls_score, label), torch.tensor(0.8522))
|
|
# test focal_loss with weight
|
|
assert torch.allclose(
|
|
loss(cls_score, label, weight=weight), torch.tensor(0.8522 / 2))
|