mmclassification/tests/test_metrics/test_metrics.py

94 lines
3.5 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
from functools import partial
import pytest
import torch
from mmcls.core import average_performance, mAP
from mmcls.models.losses.accuracy import Accuracy, accuracy_numpy
def test_mAP():
target = torch.Tensor([[1, 1, 0, -1], [1, 1, 0, -1], [0, -1, 1, -1],
[0, 1, 0, -1]])
pred = torch.Tensor([[0.9, 0.8, 0.3, 0.2], [0.1, 0.2, 0.2, 0.1],
[0.7, 0.5, 0.9, 0.3], [0.8, 0.1, 0.1, 0.2]])
# target and pred should both be np.ndarray or torch.Tensor
with pytest.raises(TypeError):
target_list = target.tolist()
_ = mAP(pred, target_list)
# target and pred should be in the same shape
with pytest.raises(AssertionError):
target_shorter = target[:-1]
_ = mAP(pred, target_shorter)
assert mAP(pred, target) == pytest.approx(68.75, rel=1e-2)
target_no_difficult = torch.Tensor([[1, 1, 0, 0], [0, 1, 0, 0],
[0, 0, 1, 0], [1, 0, 0, 0]])
assert mAP(pred, target_no_difficult) == pytest.approx(70.83, rel=1e-2)
def test_average_performance():
target = torch.Tensor([[1, 1, 0, -1], [1, 1, 0, -1], [0, -1, 1, -1],
[0, 1, 0, -1], [0, 1, 0, -1]])
pred = torch.Tensor([[0.9, 0.8, 0.3, 0.2], [0.1, 0.2, 0.2, 0.1],
[0.7, 0.5, 0.9, 0.3], [0.8, 0.1, 0.1, 0.2],
[0.8, 0.1, 0.1, 0.2]])
# target and pred should both be np.ndarray or torch.Tensor
with pytest.raises(TypeError):
target_list = target.tolist()
_ = average_performance(pred, target_list)
# target and pred should be in the same shape
with pytest.raises(AssertionError):
target_shorter = target[:-1]
_ = average_performance(pred, target_shorter)
assert average_performance(pred, target) == average_performance(
pred, target, thr=0.5)
assert average_performance(pred, target, thr=0.5, k=2) \
== average_performance(pred, target, thr=0.5)
assert average_performance(
pred, target, thr=0.3) == pytest.approx(
(31.25, 43.75, 36.46, 33.33, 42.86, 37.50), rel=1e-2)
assert average_performance(
pred, target, k=2) == pytest.approx(
(43.75, 50.00, 46.67, 40.00, 57.14, 47.06), rel=1e-2)
def test_accuracy():
pred_tensor = torch.tensor([[0.1, 0.2, 0.4], [0.2, 0.5, 0.3],
[0.4, 0.3, 0.1], [0.8, 0.9, 0.0]])
target_tensor = torch.tensor([2, 0, 0, 0])
pred_array = pred_tensor.numpy()
target_array = target_tensor.numpy()
acc_top1 = 50.
acc_top2 = 75.
compute_acc = Accuracy(topk=1)
assert compute_acc(pred_tensor, target_tensor) == acc_top1
assert compute_acc(pred_array, target_array) == acc_top1
compute_acc = Accuracy(topk=(1, ))
assert compute_acc(pred_tensor, target_tensor)[0] == acc_top1
assert compute_acc(pred_array, target_array)[0] == acc_top1
compute_acc = Accuracy(topk=(1, 2))
assert compute_acc(pred_tensor, target_array)[0] == acc_top1
assert compute_acc(pred_tensor, target_tensor)[1] == acc_top2
assert compute_acc(pred_array, target_array)[0] == acc_top1
assert compute_acc(pred_array, target_array)[1] == acc_top2
with pytest.raises(AssertionError):
compute_acc(pred_tensor, 'other_type')
# test accuracy_numpy
compute_acc = partial(accuracy_numpy, topk=(1, 2))
assert compute_acc(pred_array, target_array)[0] == acc_top1
assert compute_acc(pred_array, target_array)[1] == acc_top2