mmclassification/configs/_base_/datasets/imagenet_bs64_autoaug.py
zzc98 bc3c4a35ee
[Refactor] Support to use "split" to specify training set/validation set in the ImageNet dataset (#1535)
* [Feature]: Add caption

* [Feature]: Update scienceqa

* [CI] Add test mim CI. (#879)

* refactor imagenet dataset

* refactor imagenet dataset

* refactor imagenet dataset

* update imagenet21k

* update configs

* update mnist

* update dataset_prepare.md

* fix sun397 url and update user_guides/dataset_prepare.md

* update dataset_prepare.md

* fix sun397 dataset

* fix sun397

* update chinese dataset_prepare.md

* update dataset_prepare.md

* [Refactor] update voc dataset

* [Refactor] update voc dataset

* refactor imagenet

* refactor imagenet

* use mmengine.fileio

---------

Co-authored-by: liuyuan <3463423099@qq.com>
Co-authored-by: Ma Zerun <mzr1996@163.com>
Co-authored-by: Ezra-Yu <18586273+Ezra-Yu@users.noreply.github.com>
2023-06-02 11:03:18 +08:00

60 lines
1.6 KiB
Python

# dataset settings
dataset_type = 'ImageNet'
data_preprocessor = dict(
num_classes=1000,
# RGB format normalization parameters
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
# convert image from BGR to RGB
to_rgb=True,
)
bgr_mean = data_preprocessor['mean'][::-1]
bgr_std = data_preprocessor['std'][::-1]
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='RandomResizedCrop', scale=224),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(
type='AutoAugment',
policies='imagenet',
hparams=dict(
pad_val=[round(x) for x in bgr_mean], interpolation='bicubic')),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='ResizeEdge', scale=256, edge='short'),
dict(type='CenterCrop', crop_size=224),
dict(type='PackInputs'),
]
train_dataloader = dict(
batch_size=64,
num_workers=5,
dataset=dict(
type=dataset_type,
data_root='data/imagenet',
split='train',
pipeline=train_pipeline),
sampler=dict(type='DefaultSampler', shuffle=True),
)
val_dataloader = dict(
batch_size=64,
num_workers=5,
dataset=dict(
type=dataset_type,
data_root='data/imagenet',
split='val',
pipeline=test_pipeline),
sampler=dict(type='DefaultSampler', shuffle=False),
)
val_evaluator = dict(type='Accuracy', topk=(1, 5))
# If you want standard test, please manually configure the test dataset
test_dataloader = val_dataloader
test_evaluator = val_evaluator