mirror of
https://github.com/open-mmlab/mmclassification.git
synced 2025-06-03 21:53:55 +08:00
* [Feature]: Add caption * [Feature]: Update scienceqa * [CI] Add test mim CI. (#879) * refactor imagenet dataset * refactor imagenet dataset * refactor imagenet dataset * update imagenet21k * update configs * update mnist * update dataset_prepare.md * fix sun397 url and update user_guides/dataset_prepare.md * update dataset_prepare.md * fix sun397 dataset * fix sun397 * update chinese dataset_prepare.md * update dataset_prepare.md * [Refactor] update voc dataset * [Refactor] update voc dataset * refactor imagenet * refactor imagenet * use mmengine.fileio --------- Co-authored-by: liuyuan <3463423099@qq.com> Co-authored-by: Ma Zerun <mzr1996@163.com> Co-authored-by: Ezra-Yu <18586273+Ezra-Yu@users.noreply.github.com>
60 lines
1.6 KiB
Python
60 lines
1.6 KiB
Python
# dataset settings
|
|
dataset_type = 'ImageNet'
|
|
data_preprocessor = dict(
|
|
num_classes=1000,
|
|
# RGB format normalization parameters
|
|
mean=[123.675, 116.28, 103.53],
|
|
std=[58.395, 57.12, 57.375],
|
|
# convert image from BGR to RGB
|
|
to_rgb=True,
|
|
)
|
|
|
|
bgr_mean = data_preprocessor['mean'][::-1]
|
|
bgr_std = data_preprocessor['std'][::-1]
|
|
|
|
train_pipeline = [
|
|
dict(type='LoadImageFromFile'),
|
|
dict(type='RandomResizedCrop', scale=224),
|
|
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
|
|
dict(
|
|
type='AutoAugment',
|
|
policies='imagenet',
|
|
hparams=dict(
|
|
pad_val=[round(x) for x in bgr_mean], interpolation='bicubic')),
|
|
dict(type='PackInputs'),
|
|
]
|
|
|
|
test_pipeline = [
|
|
dict(type='LoadImageFromFile'),
|
|
dict(type='ResizeEdge', scale=256, edge='short'),
|
|
dict(type='CenterCrop', crop_size=224),
|
|
dict(type='PackInputs'),
|
|
]
|
|
|
|
train_dataloader = dict(
|
|
batch_size=64,
|
|
num_workers=5,
|
|
dataset=dict(
|
|
type=dataset_type,
|
|
data_root='data/imagenet',
|
|
split='train',
|
|
pipeline=train_pipeline),
|
|
sampler=dict(type='DefaultSampler', shuffle=True),
|
|
)
|
|
|
|
val_dataloader = dict(
|
|
batch_size=64,
|
|
num_workers=5,
|
|
dataset=dict(
|
|
type=dataset_type,
|
|
data_root='data/imagenet',
|
|
split='val',
|
|
pipeline=test_pipeline),
|
|
sampler=dict(type='DefaultSampler', shuffle=False),
|
|
)
|
|
val_evaluator = dict(type='Accuracy', topk=(1, 5))
|
|
|
|
# If you want standard test, please manually configure the test dataset
|
|
test_dataloader = val_dataloader
|
|
test_evaluator = val_evaluator
|