167 lines
6.2 KiB
Python
167 lines
6.2 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
from pathlib import Path
|
|
from typing import Callable, List, Optional
|
|
|
|
import numpy as np
|
|
from mmcv.image import imread
|
|
from mmengine.config import Config
|
|
from mmengine.dataset import Compose, default_collate
|
|
|
|
from mmpretrain.registry import TRANSFORMS
|
|
from mmpretrain.structures import DataSample
|
|
from .base import BaseInferencer, InputType
|
|
from .model import list_models
|
|
|
|
|
|
class ImageCaptionInferencer(BaseInferencer):
|
|
"""The inferencer for image caption.
|
|
|
|
Args:
|
|
model (BaseModel | str | Config): A model name or a path to the config
|
|
file, or a :obj:`BaseModel` object. The model name can be found
|
|
by ``ImageCaptionInferencer.list_models()`` and you can also
|
|
query it in :doc:`/modelzoo_statistics`.
|
|
pretrained (str, optional): Path to the checkpoint. If None, it will
|
|
try to find a pre-defined weight from the model you specified
|
|
(only work if the ``model`` is a model name). Defaults to None.
|
|
device (str, optional): Device to run inference. If None, the available
|
|
device will be automatically used. Defaults to None.
|
|
**kwargs: Other keyword arguments to initialize the model (only work if
|
|
the ``model`` is a model name).
|
|
|
|
Example:
|
|
>>> from mmpretrain import ImageCaptionInferencer
|
|
>>> inferencer = ImageCaptionInferencer('blip-base_3rdparty_caption')
|
|
>>> inferencer('demo/cat-dog.png')[0]
|
|
{'pred_caption': 'a puppy and a cat sitting on a blanket'}
|
|
""" # noqa: E501
|
|
|
|
visualize_kwargs: set = {'resize', 'show', 'show_dir', 'wait_time'}
|
|
|
|
def __call__(self,
|
|
images: InputType,
|
|
return_datasamples: bool = False,
|
|
batch_size: int = 1,
|
|
**kwargs) -> dict:
|
|
"""Call the inferencer.
|
|
|
|
Args:
|
|
images (str | array | list): The image path or array, or a list of
|
|
images.
|
|
return_datasamples (bool): Whether to return results as
|
|
:obj:`DataSample`. Defaults to False.
|
|
batch_size (int): Batch size. Defaults to 1.
|
|
resize (int, optional): Resize the short edge of the image to the
|
|
specified length before visualization. Defaults to None.
|
|
draw_score (bool): Whether to draw the prediction scores
|
|
of prediction categories. Defaults to True.
|
|
show (bool): Whether to display the visualization result in a
|
|
window. Defaults to False.
|
|
wait_time (float): The display time (s). Defaults to 0, which means
|
|
"forever".
|
|
show_dir (str, optional): If not None, save the visualization
|
|
results in the specified directory. Defaults to None.
|
|
|
|
Returns:
|
|
list: The inference results.
|
|
"""
|
|
return super().__call__(images, return_datasamples, batch_size,
|
|
**kwargs)
|
|
|
|
def _init_pipeline(self, cfg: Config) -> Callable:
|
|
test_pipeline_cfg = cfg.test_dataloader.dataset.pipeline
|
|
from mmpretrain.datasets import remove_transform
|
|
|
|
# Image loading is finished in `self.preprocess`.
|
|
test_pipeline_cfg = remove_transform(test_pipeline_cfg,
|
|
'LoadImageFromFile')
|
|
test_pipeline = Compose(
|
|
[TRANSFORMS.build(t) for t in test_pipeline_cfg])
|
|
return test_pipeline
|
|
|
|
def preprocess(self, inputs: List[InputType], batch_size: int = 1):
|
|
|
|
def load_image(input_):
|
|
img = imread(input_)
|
|
if img is None:
|
|
raise ValueError(f'Failed to read image {input_}.')
|
|
return dict(
|
|
img=img,
|
|
img_shape=img.shape[:2],
|
|
ori_shape=img.shape[:2],
|
|
)
|
|
|
|
pipeline = Compose([load_image, self.pipeline])
|
|
|
|
chunked_data = self._get_chunk_data(map(pipeline, inputs), batch_size)
|
|
yield from map(default_collate, chunked_data)
|
|
|
|
def visualize(self,
|
|
ori_inputs: List[InputType],
|
|
preds: List[DataSample],
|
|
show: bool = False,
|
|
wait_time: int = 0,
|
|
resize: Optional[int] = None,
|
|
show_dir=None):
|
|
if not show and show_dir is None:
|
|
return None
|
|
|
|
if self.visualizer is None:
|
|
from mmpretrain.visualization import UniversalVisualizer
|
|
self.visualizer = UniversalVisualizer()
|
|
|
|
visualization = []
|
|
for i, (input_, data_sample) in enumerate(zip(ori_inputs, preds)):
|
|
image = imread(input_)
|
|
if isinstance(input_, str):
|
|
# The image loaded from path is BGR format.
|
|
image = image[..., ::-1]
|
|
name = Path(input_).stem
|
|
else:
|
|
name = str(i)
|
|
|
|
if show_dir is not None:
|
|
show_dir = Path(show_dir)
|
|
show_dir.mkdir(exist_ok=True)
|
|
out_file = str((show_dir / name).with_suffix('.png'))
|
|
else:
|
|
out_file = None
|
|
|
|
self.visualizer.visualize_image_caption(
|
|
image,
|
|
data_sample,
|
|
resize=resize,
|
|
show=show,
|
|
wait_time=wait_time,
|
|
name=name,
|
|
out_file=out_file)
|
|
visualization.append(self.visualizer.get_image())
|
|
if show:
|
|
self.visualizer.close()
|
|
return visualization
|
|
|
|
def postprocess(self,
|
|
preds: List[DataSample],
|
|
visualization: List[np.ndarray],
|
|
return_datasamples=False) -> dict:
|
|
if return_datasamples:
|
|
return preds
|
|
|
|
results = []
|
|
for data_sample in preds:
|
|
results.append({'pred_caption': data_sample.get('pred_caption')})
|
|
|
|
return results
|
|
|
|
@staticmethod
|
|
def list_models(pattern: Optional[str] = None):
|
|
"""List all available model names.
|
|
|
|
Args:
|
|
pattern (str | None): A wildcard pattern to match model names.
|
|
|
|
Returns:
|
|
List[str]: a list of model names.
|
|
"""
|
|
return list_models(pattern=pattern, task='Image Caption')
|