mmclassification/configs/beitv2/metafile.yml

42 lines
1.3 KiB
YAML

Collections:
- Name: BEiTv2
Metadata:
Architecture:
- Attention Dropout
- Convolution
- Dense Connections
- Dropout
- GELU
- Layer Normalization
- Multi-Head Attention
- Scaled Dot-Product Attention
- Tanh Activation
Paper:
URL: https://arxiv.org/abs/2208.06366
Title: 'BEiT v2: Masked Image Modeling with Vector-Quantized Visual Tokenizers'
README: configs/beitv2/README.md
Code:
URL: https://github.com/open-mmlab/mmclassification/blob/dev-1.x/mmcls/models/backbones/beit.py
Version: v1.0.0rc4
Models:
- Name: beitv2-base_3rdparty_in1k
In Collection: BEiTv2
Metadata:
FLOPs: 17581219584
Parameters: 86530984
Training Data:
- ImageNet-21k
- ImageNet-1k
Results:
- Dataset: ImageNet-1k
Task: Image Classification
Metrics:
Top 1 Accuracy: 86.47
Top 5 Accuracy: 97.99
Weights: https://download.openmmlab.com/mmclassification/v0/beit/beitv2-base_3rdparty_in1k_20221114-73e11905.pth
Converted From:
Weights: https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_base_patch16_224_pt1k_ft21kto1k.pth
Code: https://github.com/microsoft/unilm/tree/master/beit2
Config: configs/beitv2/beitv2-base-p16_8xb64_in1k.py