mmclassification/tests/test_models/test_utils/test_swiglu_ffn.py

54 lines
1.7 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
from unittest import TestCase
import torch
import torch.nn as nn
from mmpretrain.models.utils import LayerScale, SwiGLUFFN, SwiGLUFFNFused
class TestSwiGLUFFN(TestCase):
def test_init(self):
swiglu = SwiGLUFFN(embed_dims=4)
assert swiglu.w12.weight.shape == torch.ones((8, 4)).shape
assert swiglu.w3.weight.shape == torch.ones((4, 4)).shape
assert isinstance(swiglu.gamma2, nn.Identity)
swiglu = SwiGLUFFN(embed_dims=4, layer_scale_init_value=0.1)
assert isinstance(swiglu.gamma2, LayerScale)
def test_forward(self):
swiglu = SwiGLUFFN(embed_dims=4)
x = torch.randn((1, 8, 4))
out = swiglu(x)
self.assertEqual(out.size(), x.size())
swiglu = SwiGLUFFN(embed_dims=4, out_dims=12)
x = torch.randn((1, 8, 4))
out = swiglu(x)
self.assertEqual(tuple(out.size()), (1, 8, 12))
class TestSwiGLUFFNFused(TestCase):
def test_init(self):
swiglu = SwiGLUFFNFused(embed_dims=4)
assert swiglu.w12.weight.shape == torch.ones((16, 4)).shape
assert swiglu.w3.weight.shape == torch.ones((4, 8)).shape
assert isinstance(swiglu.gamma2, nn.Identity)
swiglu = SwiGLUFFNFused(embed_dims=4, layer_scale_init_value=0.1)
assert isinstance(swiglu.gamma2, LayerScale)
def test_forward(self):
swiglu = SwiGLUFFNFused(embed_dims=4)
x = torch.randn((1, 8, 4))
out = swiglu(x)
self.assertEqual(out.size(), x.size())
swiglu = SwiGLUFFNFused(embed_dims=4, out_dims=12)
x = torch.randn((1, 8, 4))
out = swiglu(x)
self.assertEqual(tuple(out.size()), (1, 8, 12))