mmclassification/configs/_base_/datasets/refcoco.py

106 lines
2.6 KiB
Python

# data settings
data_preprocessor = dict(
mean=[122.770938, 116.7460125, 104.09373615],
std=[68.5005327, 66.6321579, 70.32316305],
to_rgb=True,
)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='RandomApply',
transforms=[
dict(
type='ColorJitter',
brightness=0.4,
contrast=0.4,
saturation=0.4,
hue=0.1,
backend='cv2')
],
prob=0.5),
dict(
type='mmdet.RandomCrop',
crop_type='relative_range',
crop_size=(0.8, 0.8),
allow_negative_crop=False),
dict(
type='RandomChoiceResize',
scales=[(384, 384), (360, 360), (344, 344), (312, 312), (300, 300),
(286, 286), (270, 270)],
keep_ratio=False),
dict(
type='RandomTranslatePad',
size=384,
aug_translate=True,
),
dict(type='CleanCaption', keys='text'),
dict(
type='PackInputs',
algorithm_keys=['text', 'gt_bboxes', 'scale_factor'],
meta_keys=['image_id'],
),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='Resize',
scale=(384, 384),
interpolation='bicubic',
backend='pillow'),
dict(type='CleanCaption', keys='text'),
dict(
type='PackInputs',
algorithm_keys=['text', 'gt_bboxes', 'scale_factor'],
meta_keys=['image_id'],
),
]
train_dataloader = dict(
batch_size=16,
num_workers=8,
dataset=dict(
type='RefCOCO',
data_root='data/coco',
data_prefix='train2014',
ann_file='refcoco/instances.json',
split_file='refcoco/refs(unc).p',
split='train',
pipeline=train_pipeline),
sampler=dict(type='DefaultSampler', shuffle=True),
drop_last=True,
)
val_dataloader = dict(
batch_size=16,
num_workers=8,
dataset=dict(
type='RefCOCO',
data_root='data/coco',
data_prefix='train2014',
ann_file='refcoco/instances.json',
split_file='refcoco/refs(unc).p',
split='val',
pipeline=test_pipeline),
sampler=dict(type='DefaultSampler', shuffle=False),
)
val_evaluator = dict(type='VisualGroundingMetric')
test_dataloader = dict(
batch_size=16,
num_workers=8,
dataset=dict(
type='RefCOCO',
data_root='data/coco',
data_prefix='train2014',
ann_file='refcoco/instances.json',
split_file='refcoco/refs(unc).p',
split='testA', # or 'testB'
pipeline=test_pipeline),
sampler=dict(type='DefaultSampler', shuffle=False),
)
test_evaluator = val_evaluator