mirror of
https://github.com/open-mmlab/mmclassification.git
synced 2025-06-03 21:53:55 +08:00
* add mytrain.py for test * test before layers * test attr in layers * test classifier * delete mytrain.py * add imagenet_bs4096_AdamW.py * delete 2 lines of comments * change bs to 64 * fix bug * add vit to model_zoo.md * rename
15 KiB
15 KiB
Model Zoo
ImageNet
ImageNet has multiple versions, but the most commonly used one is ILSVRC 2012. The ResNet family models below are trained by standard data augmentations, i.e., RandomResizedCrop, RandomHorizontalFlip and Normalize.
Model | Params(M) | Flops(G) | Top-1 (%) | Top-5 (%) | Config | Download |
---|---|---|---|---|---|---|
VGG-11 | 132.86 | 7.63 | 68.75 | 88.87 | config | model | log |
VGG-13 | 133.05 | 11.34 | 70.02 | 89.46 | config | model | log |
VGG-16 | 138.36 | 15.5 | 71.62 | 90.49 | config | model | log |
VGG-19 | 143.67 | 19.67 | 72.41 | 90.80 | config | model | log |
VGG-11-BN | 132.87 | 7.64 | 70.75 | 90.12 | config | model | log |
VGG-13-BN | 133.05 | 11.36 | 72.15 | 90.71 | config | model | log |
VGG-16-BN | 138.37 | 15.53 | 73.72 | 91.68 | config | model | log |
VGG-19-BN | 143.68 | 19.7 | 74.70 | 92.24 | config | model | log |
ResNet-18 | 11.69 | 1.82 | 70.07 | 89.44 | config | model | log |
ResNet-34 | 21.8 | 3.68 | 73.85 | 91.53 | config | model | log |
ResNet-50 | 25.56 | 4.12 | 76.55 | 93.15 | config | model | log |
ResNet-101 | 44.55 | 7.85 | 78.18 | 94.03 | config | model | log |
ResNet-152 | 60.19 | 11.58 | 78.63 | 94.16 | config | model | log |
ResNeSt-50* | 27.48 | 5.41 | 81.13 | 95.59 | model | log | |
ResNeSt-101* | 48.28 | 10.27 | 82.32 | 96.24 | model | log | |
ResNeSt-200* | 70.2 | 17.53 | 82.41 | 96.22 | model | log | |
ResNeSt-269* | 110.93 | 22.58 | 82.70 | 96.28 | model | log | |
ResNetV1D-50 | 25.58 | 4.36 | 77.4 | 93.66 | config | model | log |
ResNetV1D-101 | 44.57 | 8.09 | 78.85 | 94.38 | config | model | log |
ResNetV1D-152 | 60.21 | 11.82 | 79.35 | 94.61 | config | model | log |
ResNeXt-32x4d-50 | 25.03 | 4.27 | 77.92 | 93.74 | config | model | log |
ResNeXt-32x4d-101 | 44.18 | 8.03 | 78.7 | 94.34 | config | model | log |
ResNeXt-32x8d-101 | 88.79 | 16.5 | 79.22 | 94.52 | config | model | log |
ResNeXt-32x4d-152 | 59.95 | 11.8 | 79.06 | 94.47 | config | model | log |
SE-ResNet-50 | 28.09 | 4.13 | 77.74 | 93.84 | config | model | log |
SE-ResNet-101 | 49.33 | 7.86 | 78.26 | 94.07 | config | model | log |
ShuffleNetV1 1.0x (group=3) | 1.87 | 0.146 | 68.13 | 87.81 | config | model | log |
ShuffleNetV2 1.0x | 2.28 | 0.149 | 69.55 | 88.92 | config | model | log |
MobileNet V2 | 3.5 | 0.319 | 71.86 | 90.42 | config | model | log |
ViT-B/16* | 86.86 | 33.03 | 84.20 | 97.18 | config | model | log |
ViT-B/32* | 88.3 | 8.56 | 81.73 | 96.13 | config | model | log |
ViT-L/16* | 304.72 | 116.68 | 85.08 | 97.38 | config | model | log |
ViT-L/32* | 306.63 | 29.66 | 81.52 | 96.06 | config | model | log |
Models with * are converted from other repos, others are trained by ourselves.
CIFAR10
Model | Params(M) | Flops(G) | Top-1 (%) | Config | Download |
---|---|---|---|---|---|
ResNet-18-b16x8 | 11.17 | 0.56 | 94.72 | config | model | log |
ResNet-34-b16x8 | 21.28 | 1.16 | 95.34 | config | model | log |
ResNet-50-b16x8 | 23.52 | 1.31 | 95.36 | config | model | log |
ResNet-101-b16x8 | 42.51 | 2.52 | 95.66 | config | model | log |
ResNet-152-b16x8 | 58.16 | 3.74 | 95.96 | config | model | log |