5.9 KiB
5.9 KiB
Visualization
Pipeline Visualization
python tools/visualizations/vis_pipeline.py \
${CONFIG_FILE} \
--output-dir ${OUTPUT_DIR} \
--phase ${DATASET_PHASE} \
--number ${BUNBER_IMAGES_DISPLAY} \
--skip-type ${SKIP_TRANSFORM_TYPE}
--mode ${DISPLAY_MODE} \
--show \
--adaptive \
--min-edge-length ${MIN_EDGE_LENGTH} \
--max-edge-length ${MAX_EDGE_LENGTH} \
--bgr2rgb \
--window-size ${WINDOW_SIZE}
Description of all arguments:
config
: The path of a model config file.--output-dir
: The output path for visualized images. If not specified, it will be set to''
, which means not to save.--phase
: Phase of visualizing dataset,must be one of[train, val, test]
. If not specified, it will be set totrain
.--number
: The number of samples to visualize. If not specified, display all images in the dataset.--skip-type
: The pipelines to be skipped. If not specified, it will be set to['ToTensor', 'Normalize', 'ImageToTensor', 'Collect']
.--mode
: The display mode, can be one of[original, pipeline, concat]
. If not specified, it will be set toconcat
.--show
: If set, display pictures in pop-up windows.--adaptive
: If set, automatically adjust the size of the visualization images.--min-edge-length
: The minimum edge length, used when--adaptive
is set. When any side of the picture is smaller than${MIN_EDGE_LENGTH}
, the picture will be enlarged while keeping the aspect ratio unchanged, and the short side will be aligned to${MIN_EDGE_LENGTH}
. If not specified, it will be set to 200.--max-edge-length
: The maximum edge length, used when--adaptive
is set. When any side of the picture is larger than${MAX_EDGE_LENGTH}
, the picture will be reduced while keeping the aspect ratio unchanged, and the long side will be aligned to${MAX_EDGE_LENGTH}
. If not specified, it will be set to 1000.--bgr2rgb
: If set, flip the color channel order of images.--window-size
: The shape of the display window. If not specified, it will be set to12*7
. If used, it must be in the format'W*H'
.
1. If the `--mode` is not specified, it will be set to `concat` as default, get the pictures stitched together by original pictures and transformed pictures; if the `--mode` is set to `original`, get the original pictures; if the `--mode` is set to `pipeline`, get the transformed pictures.
2. When `--adaptive` option is set, images that are too large or too small will be automatically adjusted, you can use `--min-edge-length` and `--max-edge-length` to set the adjust size.
Examples:
- Visualize all the transformed pictures of the
ImageNet
training set and display them in pop-up windows:
python ./tools/visualizations/vis_pipeline.py ./configs/resnet/resnet50_8xb32_in1k.py --show --mode pipeline

- Visualize 10 comparison pictures in the
ImageNet
train set and save them in the./tmp
folder:
python ./tools/visualizations/vis_pipeline.py configs/swin_transformer/swin_base_224_b16x64_300e_imagenet.py --phase train --output-dir tmp --number 10 --adaptive

- Visualize 100 original pictures in the
CIFAR100
validation set, then display and save them in the./tmp
folder:
python ./tools/visualizations/vis_pipeline.py configs/resnet/resnet50_8xb16_cifar100.py --phase val --output-dir tmp --mode original --number 100 --show --adaptive --bgr2rgb

Learning Rate Schedule Visualization
python tools/visualizations/vis_lr.py \
${CONFIG_FILE} \
--dataset-size ${DATASET_SIZE} \
--ngpus ${NUM_GPUs}
--save-path ${SAVE_PATH} \
--title ${TITLE} \
--style ${STYLE} \
--window-size ${WINDOW_SIZE}
--cfg-options
Description of all arguments:
config
: The path of a model config file.dataset-size
: The size of the datasets. If set,build_dataset
will be skipped and${DATASET_SIZE}
will be used as the size. Default to use the functionbuild_dataset
.ngpus
: The number of GPUs used in training, default to be 1.save-path
: The learning rate curve plot save path, default not to save.title
: Title of figure. If not set, default to be config file name.style
: Style of plt. If not set, default to bewhitegrid
.window-size
: The shape of the display window. If not specified, it will be set to12*7
. If used, it must be in the format'W*H'
.cfg-options
: Modifications to the configuration file, refer to Tutorial 1: Learn about Configs.
Loading annotations maybe consume much time, you can directly specify the size of the dataset with `dataset-size` to save time.
Examples:
python tools/visualizations/vis_lr.py configs/resnet/resnet50_b16x8_cifar100.py

When using ImageNet, directly specify the size of ImageNet, as below:
python tools/visualizations/vis_lr.py configs/repvgg/repvgg-B3g4_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py --dataset-size 1281167 --ngpus 4 --save-path ./repvgg-B3g4_4xb64-lr.jpg

FAQs
- None