mmclassification/tests/test_models/test_backbones/test_deit.py

44 lines
1.3 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import torch
from torch.nn.modules.batchnorm import _BatchNorm
from mmcls.models.backbones import DistilledVisionTransformer
def check_norm_state(modules, train_state):
"""Check if norm layer is in correct train state."""
for mod in modules:
if isinstance(mod, _BatchNorm):
if mod.training != train_state:
return False
return True
def test_deit_backbone():
cfg_ori = dict(arch='deit-b', img_size=224, patch_size=16)
# Test structure
model = DistilledVisionTransformer(**cfg_ori)
model.init_weights()
model.train()
assert check_norm_state(model.modules(), True)
assert model.dist_token.shape == (1, 1, 768)
assert model.pos_embed.shape == (1, model.patch_embed.num_patches + 2, 768)
# Test forward
imgs = torch.rand(1, 3, 224, 224)
outs = model(imgs)
patch_token, cls_token, dist_token = outs[0]
assert patch_token.shape == (1, 768, 14, 14)
assert cls_token.shape == (1, 768)
assert dist_token.shape == (1, 768)
# Test multiple out_indices
model = DistilledVisionTransformer(
**cfg_ori, out_indices=(0, 1, 2, 3), output_cls_token=False)
outs = model(imgs)
for out in outs:
assert out.shape == (1, 768, 14, 14)