mmcv/tests/test_ops/test_voxelization.py

254 lines
9.3 KiB
Python
Raw Normal View History

# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
import pytest
import torch
from mmcv.ops import Voxelization
from mmcv.utils import (IS_CUDA_AVAILABLE, IS_MLU_AVAILABLE, IS_MUSA_AVAILABLE,
IS_NPU_AVAILABLE)
def _get_voxel_points_indices(points, coors, voxel):
result_form = np.equal(coors, voxel)
return result_form[:, 0] & result_form[:, 1] & result_form[:, 2]
@pytest.mark.parametrize('device_type', [
'cpu',
pytest.param(
'cuda:0',
marks=pytest.mark.skipif(
Pick MLU modifications from master (1.x) to main (2.x) (#2704) * [Feature] Support Voxelization with cambricon MLU device (#2500) * [Feature] Support hard_voxelize with cambricon MLU backend * [Feature](bangc-ops): add voxelization op * [Feature](bangc-ops): add voxelization op * [Feature](bangc-ops): add voxelization op * [Feature](bangc-ops): add voxelization op * [Feature](bangc-ops): add voxelization op * [Feature](bangc-ops): add voxelization op * [Feature](bangc-ops): add voxelization op * [Feature](bangc-ops): add voxelization op * [Enhance] Optimize the performace of ms_deform_attn for MLU device (#2510) * ms_opt * ms_opt * ms_opt * ms_opt * ms_opt * [Feature] ms_deform_attn performance optimization * [Feature] ms_deform_attn performance optimization * [Feature] ms_deform_attn performance optimization * [Feature] Support ball_query with cambricon MLU backend and mlu-ops library. (#2520) * [Feature] Support ball_query with cambricon MLU backend and mlu-ops library. * [Fix] update operator data layout setting. * [Fix] add cxx compile option to avoid symbol conflict. * [Fix] fix lint errors. * [Fix] update ops.md with info of ball_query support by MLU backend. * [Feature] Fix typo. * [Fix] Remove print. * [Fix] get mlu-ops from MMCV_MLU_OPS_PATH env. * [Fix] update MMCV_MLU_OPS_PATH check logic. * [Fix] update error info when failed to download mlu-ops. * [Fix] check mlu-ops version matching info in mmcv. * [Fix] revise wrong filename. * [Fix] remove f.close and re. * [Docs] Steps to compile mmcv-full on MLU machine (#2571) * [Docs] Steps to compile mmcv-full on MLU machine * [Docs] Adjust paragraph order * Update docs/zh_cn/get_started/build.md Co-authored-by: Zaida Zhou <58739961+zhouzaida@users.noreply.github.com> * Update docs/zh_cn/get_started/build.md Co-authored-by: Zaida Zhou <58739961+zhouzaida@users.noreply.github.com> * Update docs/en/get_started/build.md Co-authored-by: Zaida Zhou <58739961+zhouzaida@users.noreply.github.com> * Update docs/en/get_started/build.md Co-authored-by: Zaida Zhou <58739961+zhouzaida@users.noreply.github.com> * [Docs] Modify the format --------- Co-authored-by: budefei <budefei@cambricon.com> Co-authored-by: Zaida Zhou <58739961+zhouzaida@users.noreply.github.com> * [Fix] Fix tensor descriptor setting in MLU ball_query. (#2579) * [Feature] Add MLU support for Sparse Convolution op (#2589) * [Feature] Add sparse convolution MLU API * [Feature] update cpp code style * end-of-file * delete libext.a * code style * update ops.md --------- Co-authored-by: budefei <budefei@cambricon.com> * [Enhancement] Replace the implementation of deform_roi_pool with mlu-ops (#2598) * [Feature] Replace the implementation of deform_roi_pool with mlu-ops * [Feature] Modify code --------- Co-authored-by: budefei <budefei@cambricon.com> * [Enhancement] ms_deform_attn performance optimization (#2616) * ms_opt_v2 * ms_opt_v2_1 * optimize MultiScaleDeformableAttention ops for MLU * ms_opt_v2_1 * [Feature] ms_deform_attn performance optimization V2 * [Feature] ms_deform_attn performance optimization V2 * [Feature] ms_deform_attn performance optimization V2 * [Feature] ms_deform_attn performance optimization V2 * [Feature] ms_deform_attn performance optimization V2 * [Feature] ms_deform_attn performance optimization V2 * [Feature] ms_deform_attn performance optimization V2 --------- Co-authored-by: dongchengwei <dongchengwei@cambricon.com> * [Feature] Support NmsRotated with cambricon MLU backend (#2643) * [Feature] Support NmsRotated with cambricon MLU backend * [Feature] remove foolproofs in nms_rotated_mlu.cpp * [Feature] fix lint in test_nms_rotated.py * [Feature] fix kMLU not found in nms_rotated.cpp * [Feature] modify mlu support in nms.py * [Feature] modify nms_rotated support in ops.md * [Feature] modify ops/nms.py * [Enhance] Add a default value for MMCV_MLU_ARGS (#2688) * add mlu_args * add mlu_args * Modify the code --------- Co-authored-by: budefei <budefei@cambricon.com> * [Enhance] Ignore mlu-ops files (#2691) Co-authored-by: budefei <budefei@cambricon.com> --------- Co-authored-by: ZShaopeng <108382403+ZShaopeng@users.noreply.github.com> Co-authored-by: BinZheng <38182684+Wickyzheng@users.noreply.github.com> Co-authored-by: liuduanhui <103939338+DanieeelLiu@users.noreply.github.com> Co-authored-by: budefei <budefei@cambricon.com> Co-authored-by: Zaida Zhou <58739961+zhouzaida@users.noreply.github.com> Co-authored-by: duzekun <108381389+duzekunKTH@users.noreply.github.com> Co-authored-by: dongchengwei <dongchengwei@cambricon.com> Co-authored-by: liuyuan1-v <125547457+liuyuan1-v@users.noreply.github.com>
2023-04-19 10:42:07 +08:00
not IS_CUDA_AVAILABLE, reason='requires CUDA support'))
])
def test_voxelization(device_type):
voxel_size = [0.5, 0.5, 0.5]
point_cloud_range = [0, -40, -3, 70.4, 40, 1]
voxel_dict = np.load(
'tests/data/for_3d_ops/test_voxel.npy', allow_pickle=True).item()
expected_coors = voxel_dict['coors']
expected_voxels = voxel_dict['voxels']
expected_num_points_per_voxel = voxel_dict['num_points_per_voxel']
points = voxel_dict['points']
points = torch.tensor(points)
max_num_points = -1
dynamic_voxelization = Voxelization(voxel_size, point_cloud_range,
max_num_points)
max_num_points = 1000
hard_voxelization = Voxelization(voxel_size, point_cloud_range,
max_num_points)
device = torch.device(device_type)
# test hard_voxelization on cpu/gpu
points = points.contiguous().to(device)
coors, voxels, num_points_per_voxel = hard_voxelization.forward(points)
coors = coors.cpu().detach().numpy()
voxels = voxels.cpu().detach().numpy()
num_points_per_voxel = num_points_per_voxel.cpu().detach().numpy()
assert np.all(coors == expected_coors)
assert np.all(voxels == expected_voxels)
assert np.all(num_points_per_voxel == expected_num_points_per_voxel)
# test dynamic_voxelization on cpu/gpu
coors = dynamic_voxelization.forward(points)
coors = coors.cpu().detach().numpy()
points = points.cpu().detach().numpy()
for i in range(expected_voxels.shape[0]):
indices = _get_voxel_points_indices(points, coors, expected_voxels[i])
num_points_current_voxel = points[indices].shape[0]
assert num_points_current_voxel > 0
assert np.all(
points[indices] == expected_coors[i][:num_points_current_voxel])
assert num_points_current_voxel == expected_num_points_per_voxel[i]
Pick MLU modifications from master (1.x) to main (2.x) (#2704) * [Feature] Support Voxelization with cambricon MLU device (#2500) * [Feature] Support hard_voxelize with cambricon MLU backend * [Feature](bangc-ops): add voxelization op * [Feature](bangc-ops): add voxelization op * [Feature](bangc-ops): add voxelization op * [Feature](bangc-ops): add voxelization op * [Feature](bangc-ops): add voxelization op * [Feature](bangc-ops): add voxelization op * [Feature](bangc-ops): add voxelization op * [Feature](bangc-ops): add voxelization op * [Enhance] Optimize the performace of ms_deform_attn for MLU device (#2510) * ms_opt * ms_opt * ms_opt * ms_opt * ms_opt * [Feature] ms_deform_attn performance optimization * [Feature] ms_deform_attn performance optimization * [Feature] ms_deform_attn performance optimization * [Feature] Support ball_query with cambricon MLU backend and mlu-ops library. (#2520) * [Feature] Support ball_query with cambricon MLU backend and mlu-ops library. * [Fix] update operator data layout setting. * [Fix] add cxx compile option to avoid symbol conflict. * [Fix] fix lint errors. * [Fix] update ops.md with info of ball_query support by MLU backend. * [Feature] Fix typo. * [Fix] Remove print. * [Fix] get mlu-ops from MMCV_MLU_OPS_PATH env. * [Fix] update MMCV_MLU_OPS_PATH check logic. * [Fix] update error info when failed to download mlu-ops. * [Fix] check mlu-ops version matching info in mmcv. * [Fix] revise wrong filename. * [Fix] remove f.close and re. * [Docs] Steps to compile mmcv-full on MLU machine (#2571) * [Docs] Steps to compile mmcv-full on MLU machine * [Docs] Adjust paragraph order * Update docs/zh_cn/get_started/build.md Co-authored-by: Zaida Zhou <58739961+zhouzaida@users.noreply.github.com> * Update docs/zh_cn/get_started/build.md Co-authored-by: Zaida Zhou <58739961+zhouzaida@users.noreply.github.com> * Update docs/en/get_started/build.md Co-authored-by: Zaida Zhou <58739961+zhouzaida@users.noreply.github.com> * Update docs/en/get_started/build.md Co-authored-by: Zaida Zhou <58739961+zhouzaida@users.noreply.github.com> * [Docs] Modify the format --------- Co-authored-by: budefei <budefei@cambricon.com> Co-authored-by: Zaida Zhou <58739961+zhouzaida@users.noreply.github.com> * [Fix] Fix tensor descriptor setting in MLU ball_query. (#2579) * [Feature] Add MLU support for Sparse Convolution op (#2589) * [Feature] Add sparse convolution MLU API * [Feature] update cpp code style * end-of-file * delete libext.a * code style * update ops.md --------- Co-authored-by: budefei <budefei@cambricon.com> * [Enhancement] Replace the implementation of deform_roi_pool with mlu-ops (#2598) * [Feature] Replace the implementation of deform_roi_pool with mlu-ops * [Feature] Modify code --------- Co-authored-by: budefei <budefei@cambricon.com> * [Enhancement] ms_deform_attn performance optimization (#2616) * ms_opt_v2 * ms_opt_v2_1 * optimize MultiScaleDeformableAttention ops for MLU * ms_opt_v2_1 * [Feature] ms_deform_attn performance optimization V2 * [Feature] ms_deform_attn performance optimization V2 * [Feature] ms_deform_attn performance optimization V2 * [Feature] ms_deform_attn performance optimization V2 * [Feature] ms_deform_attn performance optimization V2 * [Feature] ms_deform_attn performance optimization V2 * [Feature] ms_deform_attn performance optimization V2 --------- Co-authored-by: dongchengwei <dongchengwei@cambricon.com> * [Feature] Support NmsRotated with cambricon MLU backend (#2643) * [Feature] Support NmsRotated with cambricon MLU backend * [Feature] remove foolproofs in nms_rotated_mlu.cpp * [Feature] fix lint in test_nms_rotated.py * [Feature] fix kMLU not found in nms_rotated.cpp * [Feature] modify mlu support in nms.py * [Feature] modify nms_rotated support in ops.md * [Feature] modify ops/nms.py * [Enhance] Add a default value for MMCV_MLU_ARGS (#2688) * add mlu_args * add mlu_args * Modify the code --------- Co-authored-by: budefei <budefei@cambricon.com> * [Enhance] Ignore mlu-ops files (#2691) Co-authored-by: budefei <budefei@cambricon.com> --------- Co-authored-by: ZShaopeng <108382403+ZShaopeng@users.noreply.github.com> Co-authored-by: BinZheng <38182684+Wickyzheng@users.noreply.github.com> Co-authored-by: liuduanhui <103939338+DanieeelLiu@users.noreply.github.com> Co-authored-by: budefei <budefei@cambricon.com> Co-authored-by: Zaida Zhou <58739961+zhouzaida@users.noreply.github.com> Co-authored-by: duzekun <108381389+duzekunKTH@users.noreply.github.com> Co-authored-by: dongchengwei <dongchengwei@cambricon.com> Co-authored-by: liuyuan1-v <125547457+liuyuan1-v@users.noreply.github.com>
2023-04-19 10:42:07 +08:00
@pytest.mark.skipif(not IS_CUDA_AVAILABLE, reason='requires CUDA support')
def test_voxelization_nondeterministic():
voxel_size = [0.5, 0.5, 0.5]
point_cloud_range = [0, -40, -3, 70.4, 40, 1]
voxel_dict = np.load(
'tests/data/for_3d_ops/test_voxel.npy', allow_pickle=True).item()
points = voxel_dict['points']
points = torch.tensor(points)
max_num_points = -1
dynamic_voxelization = Voxelization(voxel_size, point_cloud_range,
max_num_points)
max_num_points = 10
max_voxels = 50
hard_voxelization = Voxelization(
voxel_size,
point_cloud_range,
max_num_points,
max_voxels,
deterministic=False)
# test hard_voxelization (non-deterministic version) on gpu
points = torch.tensor(points).contiguous().to(device='cuda:0')
voxels, coors, num_points_per_voxel = hard_voxelization.forward(points)
coors = coors.cpu().detach().numpy().tolist()
voxels = voxels.cpu().detach().numpy().tolist()
num_points_per_voxel = num_points_per_voxel.cpu().detach().numpy().tolist()
coors_all = dynamic_voxelization.forward(points)
coors_all = coors_all.cpu().detach().numpy().tolist()
coors_set = {tuple(c) for c in coors}
coors_all_set = {tuple(c) for c in coors_all}
assert len(coors_set) == len(coors)
assert len(coors_set - coors_all_set) == 0
points = points.cpu().detach().numpy().tolist()
coors_points_dict = {}
for c, ps in zip(coors_all, points):
if tuple(c) not in coors_points_dict:
coors_points_dict[tuple(c)] = set()
coors_points_dict[tuple(c)].add(tuple(ps))
for c, ps, n in zip(coors, voxels, num_points_per_voxel):
ideal_voxel_points_set = coors_points_dict[tuple(c)]
voxel_points_set = {tuple(p) for p in ps[:n]}
assert len(voxel_points_set) == n
if n < max_num_points:
assert voxel_points_set == ideal_voxel_points_set
for p in ps[n:]:
assert max(p) == min(p) == 0
else:
assert len(voxel_points_set - ideal_voxel_points_set) == 0
# test hard_voxelization (non-deterministic version) on gpu
# with all input point in range
points = torch.tensor(points).contiguous().to(device='cuda:0')[:max_voxels]
coors_all = dynamic_voxelization.forward(points)
valid_mask = coors_all.ge(0).all(-1)
points = points[valid_mask]
coors_all = coors_all[valid_mask]
coors_all = coors_all.cpu().detach().numpy().tolist()
voxels, coors, num_points_per_voxel = hard_voxelization.forward(points)
coors = coors.cpu().detach().numpy().tolist()
coors_set = {tuple(c) for c in coors}
coors_all_set = {tuple(c) for c in coors_all}
assert len(coors_set) == len(coors) == len(coors_all_set)
@pytest.mark.parametrize(
'device_type',
[
pytest.param(
# this is only used for dipu device testing case.
# dipu will mock to cuda automatically on mlu physical device.
'cuda:0',
marks=pytest.mark.skipif(
not IS_CUDA_AVAILABLE, reason='requires CUDA support')),
pytest.param(
'mlu',
marks=pytest.mark.skipif(
not IS_MLU_AVAILABLE, reason='requires MLU support'))
])
Pick MLU modifications from master (1.x) to main (2.x) (#2704) * [Feature] Support Voxelization with cambricon MLU device (#2500) * [Feature] Support hard_voxelize with cambricon MLU backend * [Feature](bangc-ops): add voxelization op * [Feature](bangc-ops): add voxelization op * [Feature](bangc-ops): add voxelization op * [Feature](bangc-ops): add voxelization op * [Feature](bangc-ops): add voxelization op * [Feature](bangc-ops): add voxelization op * [Feature](bangc-ops): add voxelization op * [Feature](bangc-ops): add voxelization op * [Enhance] Optimize the performace of ms_deform_attn for MLU device (#2510) * ms_opt * ms_opt * ms_opt * ms_opt * ms_opt * [Feature] ms_deform_attn performance optimization * [Feature] ms_deform_attn performance optimization * [Feature] ms_deform_attn performance optimization * [Feature] Support ball_query with cambricon MLU backend and mlu-ops library. (#2520) * [Feature] Support ball_query with cambricon MLU backend and mlu-ops library. * [Fix] update operator data layout setting. * [Fix] add cxx compile option to avoid symbol conflict. * [Fix] fix lint errors. * [Fix] update ops.md with info of ball_query support by MLU backend. * [Feature] Fix typo. * [Fix] Remove print. * [Fix] get mlu-ops from MMCV_MLU_OPS_PATH env. * [Fix] update MMCV_MLU_OPS_PATH check logic. * [Fix] update error info when failed to download mlu-ops. * [Fix] check mlu-ops version matching info in mmcv. * [Fix] revise wrong filename. * [Fix] remove f.close and re. * [Docs] Steps to compile mmcv-full on MLU machine (#2571) * [Docs] Steps to compile mmcv-full on MLU machine * [Docs] Adjust paragraph order * Update docs/zh_cn/get_started/build.md Co-authored-by: Zaida Zhou <58739961+zhouzaida@users.noreply.github.com> * Update docs/zh_cn/get_started/build.md Co-authored-by: Zaida Zhou <58739961+zhouzaida@users.noreply.github.com> * Update docs/en/get_started/build.md Co-authored-by: Zaida Zhou <58739961+zhouzaida@users.noreply.github.com> * Update docs/en/get_started/build.md Co-authored-by: Zaida Zhou <58739961+zhouzaida@users.noreply.github.com> * [Docs] Modify the format --------- Co-authored-by: budefei <budefei@cambricon.com> Co-authored-by: Zaida Zhou <58739961+zhouzaida@users.noreply.github.com> * [Fix] Fix tensor descriptor setting in MLU ball_query. (#2579) * [Feature] Add MLU support for Sparse Convolution op (#2589) * [Feature] Add sparse convolution MLU API * [Feature] update cpp code style * end-of-file * delete libext.a * code style * update ops.md --------- Co-authored-by: budefei <budefei@cambricon.com> * [Enhancement] Replace the implementation of deform_roi_pool with mlu-ops (#2598) * [Feature] Replace the implementation of deform_roi_pool with mlu-ops * [Feature] Modify code --------- Co-authored-by: budefei <budefei@cambricon.com> * [Enhancement] ms_deform_attn performance optimization (#2616) * ms_opt_v2 * ms_opt_v2_1 * optimize MultiScaleDeformableAttention ops for MLU * ms_opt_v2_1 * [Feature] ms_deform_attn performance optimization V2 * [Feature] ms_deform_attn performance optimization V2 * [Feature] ms_deform_attn performance optimization V2 * [Feature] ms_deform_attn performance optimization V2 * [Feature] ms_deform_attn performance optimization V2 * [Feature] ms_deform_attn performance optimization V2 * [Feature] ms_deform_attn performance optimization V2 --------- Co-authored-by: dongchengwei <dongchengwei@cambricon.com> * [Feature] Support NmsRotated with cambricon MLU backend (#2643) * [Feature] Support NmsRotated with cambricon MLU backend * [Feature] remove foolproofs in nms_rotated_mlu.cpp * [Feature] fix lint in test_nms_rotated.py * [Feature] fix kMLU not found in nms_rotated.cpp * [Feature] modify mlu support in nms.py * [Feature] modify nms_rotated support in ops.md * [Feature] modify ops/nms.py * [Enhance] Add a default value for MMCV_MLU_ARGS (#2688) * add mlu_args * add mlu_args * Modify the code --------- Co-authored-by: budefei <budefei@cambricon.com> * [Enhance] Ignore mlu-ops files (#2691) Co-authored-by: budefei <budefei@cambricon.com> --------- Co-authored-by: ZShaopeng <108382403+ZShaopeng@users.noreply.github.com> Co-authored-by: BinZheng <38182684+Wickyzheng@users.noreply.github.com> Co-authored-by: liuduanhui <103939338+DanieeelLiu@users.noreply.github.com> Co-authored-by: budefei <budefei@cambricon.com> Co-authored-by: Zaida Zhou <58739961+zhouzaida@users.noreply.github.com> Co-authored-by: duzekun <108381389+duzekunKTH@users.noreply.github.com> Co-authored-by: dongchengwei <dongchengwei@cambricon.com> Co-authored-by: liuyuan1-v <125547457+liuyuan1-v@users.noreply.github.com>
2023-04-19 10:42:07 +08:00
def test_voxelization_mlu(device_type):
voxel_size = [0.5, 0.5, 0.5]
point_cloud_range = [0, -40, -3, 70.4, 40, 1]
voxel_dict = np.load(
'tests/data/for_3d_ops/test_voxel.npy', allow_pickle=True).item()
expected_coors = voxel_dict['coors']
expected_voxels = voxel_dict['voxels']
expected_num_points_per_voxel = voxel_dict['num_points_per_voxel']
points = voxel_dict['points']
points = torch.tensor(points)
max_num_points = 1000
hard_voxelization = Voxelization(voxel_size, point_cloud_range,
max_num_points)
device = torch.device(device_type)
# test hard_voxelization on mlu
points = points.contiguous().to(device)
coors, voxels, num_points_per_voxel = hard_voxelization.forward(points)
coors = coors.cpu().detach().numpy()
voxels = voxels.cpu().detach().numpy()
num_points_per_voxel = num_points_per_voxel.cpu().detach().numpy()
assert np.all(coors == expected_coors)
assert np.all(voxels == expected_voxels)
assert np.all(num_points_per_voxel == expected_num_points_per_voxel)
@pytest.mark.parametrize('device_type', [
pytest.param(
'npu',
marks=pytest.mark.skipif(
not IS_NPU_AVAILABLE, reason='requires NPU support'))
])
def test_voxelization_npu(device_type):
voxel_size = [0.5, 0.5, 0.5]
point_cloud_range = [0, -40, -3, 70.4, 40, 1]
voxel_dict = np.load(
'tests/data/for_3d_ops/test_voxel.npy', allow_pickle=True).item()
expected_coors = voxel_dict['coors']
expected_voxels = voxel_dict['voxels']
expected_num_points_per_voxel = voxel_dict['num_points_per_voxel']
points = voxel_dict['points']
points = torch.tensor(points)
max_num_points = 1000
hard_voxelization = Voxelization(voxel_size, point_cloud_range,
max_num_points)
device = torch.device(device_type)
# test hard_voxelization on npu
points = points.contiguous().to(device)
coors, voxels, num_points_per_voxel = hard_voxelization.forward(points)
coors = coors.cpu().detach().numpy()
voxels = voxels.cpu().detach().numpy()
num_points_per_voxel = num_points_per_voxel.cpu().detach().numpy()
assert np.all(coors == expected_coors)
assert np.all(voxels == expected_voxels)
assert np.all(num_points_per_voxel == expected_num_points_per_voxel)
@pytest.mark.parametrize('device_type', [
pytest.param(
'musa',
marks=pytest.mark.skipif(
not IS_MUSA_AVAILABLE, reason='requires MUSA support')),
])
def test_voxelization_musa(device_type):
voxel_size = [0.5, 0.5, 0.5]
point_cloud_range = [0, -40, -3, 70.4, 40, 1]
voxel_dict = np.load(
'tests/data/for_3d_ops/test_voxel.npy', allow_pickle=True).item()
expected_coors = voxel_dict['coors']
expected_voxels = voxel_dict['voxels']
expected_num_points_per_voxel = voxel_dict['num_points_per_voxel']
points = voxel_dict['points']
points = torch.tensor(points)
max_num_points = 1000
hard_voxelization = Voxelization(voxel_size, point_cloud_range,
max_num_points)
device = torch.device(device_type)
# test hard_voxelization on mlu
points = points.contiguous().to(device)
coors, voxels, num_points_per_voxel = hard_voxelization.forward(points)
coors = coors.cpu().detach().numpy()
voxels = voxels.cpu().detach().numpy()
num_points_per_voxel = num_points_per_voxel.cpu().detach().numpy()
assert np.all(coors == expected_coors)
assert np.all(voxels == expected_voxels)
assert np.all(num_points_per_voxel == expected_num_points_per_voxel)