mmcv/tests/test_ops/test_tensorrt.py

171 lines
4.9 KiB
Python
Raw Normal View History

import os
import numpy as np
import onnx
import pytest
import torch
try:
from mmcv.tensorrt import (TRTWraper, is_tensorrt_plugin_loaded, onnx2trt,
save_trt_engine)
except ImportError:
pytest.skip(
'TensorRT should be installed from source.', allow_module_level=True)
if not torch.cuda.is_available():
pytest.skip(
'CUDA is required for this test module', allow_module_level=True)
if not is_tensorrt_plugin_loaded():
pytest.skip(
'Test requires to complie TensorRT plugins in mmcv',
allow_module_level=True)
class WrapFunction(torch.nn.Module):
def __init__(self, wrapped_function):
super(WrapFunction, self).__init__()
self.wrapped_function = wrapped_function
def forward(self, *args, **kwargs):
return self.wrapped_function(*args, **kwargs)
onnx_file = 'tmp.onnx'
trt_file = 'tmp.engine'
def test_roialign():
try:
from mmcv.ops import RoIAlign
except (ImportError, ModuleNotFoundError):
pytest.skip('test requires compilation')
# trt config
fp16_mode = False
max_workspace_size = 1 << 30
# roi align config
pool_h = 2
pool_w = 2
spatial_scale = 1.0
sampling_ratio = 2
inputs = [([[[[1., 2.], [3., 4.]]]], [[0., 0., 0., 1., 1.]]),
([[[[1., 2.], [3., 4.]], [[4., 3.],
[2., 1.]]]], [[0., 0., 0., 1., 1.]]),
([[[[1., 2., 5., 6.], [3., 4., 7., 8.], [9., 10., 13., 14.],
[11., 12., 15., 16.]]]], [[0., 0., 0., 3., 3.]])]
wrapped_model = RoIAlign((pool_w, pool_h), spatial_scale, sampling_ratio,
'avg', True).cuda()
for case in inputs:
np_input = np.array(case[0], dtype=np.float32)
np_rois = np.array(case[1], dtype=np.float32)
input = torch.from_numpy(np_input).cuda()
rois = torch.from_numpy(np_rois).cuda()
with torch.no_grad():
torch.onnx.export(
wrapped_model, (input, rois),
onnx_file,
export_params=True,
keep_initializers_as_inputs=True,
input_names=['input', 'rois'],
output_names=['roi_feat'],
opset_version=11)
onnx_model = onnx.load(onnx_file)
# create trt engine and wraper
opt_shape_dict = {
'input': [list(input.shape),
list(input.shape),
list(input.shape)],
'rois': [list(rois.shape),
list(rois.shape),
list(rois.shape)]
}
trt_engine = onnx2trt(
onnx_model,
opt_shape_dict,
fp16_mode=fp16_mode,
max_workspace_size=max_workspace_size)
save_trt_engine(trt_engine, trt_file)
trt_model = TRTWraper(trt_file, ['input', 'rois'], ['roi_feat'])
with torch.no_grad():
trt_outputs = trt_model({'input': input, 'rois': rois})
trt_roi_feat = trt_outputs['roi_feat']
# compute pytorch_output
with torch.no_grad():
pytorch_roi_feat = wrapped_model(input, rois)
# allclose
if os.path.exists(onnx_file):
os.remove(onnx_file)
if os.path.exists(trt_file):
os.remove(trt_file)
assert torch.allclose(pytorch_roi_feat, trt_roi_feat)
def test_scatternd():
def func(data):
data[:, :-2] += 1
data[:2, :] -= 1
return data
data = torch.zeros(4, 4).cuda()
wrapped_model = WrapFunction(func).eval().cuda()
input_names = ['input']
output_names = ['output']
with torch.no_grad():
torch.onnx.export(
wrapped_model, (data.clone(), ),
onnx_file,
export_params=True,
keep_initializers_as_inputs=True,
input_names=input_names,
output_names=output_names,
opset_version=11)
onnx_model = onnx.load(onnx_file)
# create trt engine and wraper
opt_shape_dict = {
'input': [list(data.shape),
list(data.shape),
list(data.shape)],
}
# trt config
fp16_mode = False
max_workspace_size = 1 << 30
trt_engine = onnx2trt(
onnx_model,
opt_shape_dict,
fp16_mode=fp16_mode,
max_workspace_size=max_workspace_size)
save_trt_engine(trt_engine, trt_file)
trt_model = TRTWraper(trt_file, input_names, output_names)
with torch.no_grad():
trt_outputs = trt_model({'input': data.clone()})
trt_results = trt_outputs['output']
# compute pytorch_output
with torch.no_grad():
pytorch_results = wrapped_model(data.clone())
# allclose
if os.path.exists(onnx_file):
os.remove(onnx_file)
if os.path.exists(trt_file):
os.remove(trt_file)
assert torch.allclose(pytorch_results, trt_results)