mmcv/tests/test_runner/test_hooks.py

227 lines
6.2 KiB
Python
Raw Normal View History

"""
Tests the hooks with runners.
CommandLine:
pytest tests/test_hooks.py
xdoctest tests/test_hooks.py zero
"""
import logging
import os.path as osp
import shutil
import sys
import tempfile
from unittest.mock import MagicMock, call
import pytest
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from mmcv.runner import (EpochBasedRunner, IterTimerHook, MlflowLoggerHook,
PaviLoggerHook, WandbLoggerHook)
from mmcv.runner.hooks.lr_updater import (CosineAnealingLrUpdaterHook,
CyclicLrUpdaterHook)
from mmcv.runner.hooks.momentum_updater import (
CosineAnealingMomentumUpdaterHook, CyclicMomentumUpdaterHook)
def test_pavi_hook():
sys.modules['pavi'] = MagicMock()
loader = DataLoader(torch.ones((5, 2)))
runner = _build_demo_runner()
hook = PaviLoggerHook(add_graph=False, add_last_ckpt=True)
runner.register_hook(hook)
runner.run([loader, loader], [('train', 1), ('val', 1)], 1)
shutil.rmtree(runner.work_dir)
assert hasattr(hook, 'writer')
hook.writer.add_scalars.assert_called_with('val', {
'learning_rate': 0.02,
'momentum': 0.95
}, 5)
hook.writer.add_snapshot_file.assert_called_with(
tag=runner.work_dir.split('/')[-1],
snapshot_file_path=osp.join(runner.work_dir, 'latest.pth'),
iteration=5)
def test_momentum_runner_hook():
"""
xdoctest -m tests/test_hooks.py test_momentum_runner_hook
"""
sys.modules['pavi'] = MagicMock()
loader = DataLoader(torch.ones((10, 2)))
runner = _build_demo_runner()
# add momentum scheduler
hook = CyclicMomentumUpdaterHook(
by_epoch=False,
target_ratio=(0.85 / 0.95, 1),
cyclic_times=1,
step_ratio_up=0.4)
runner.register_hook(hook)
# add momentum LR scheduler
hook = CyclicLrUpdaterHook(
by_epoch=False,
target_ratio=(10, 1),
cyclic_times=1,
step_ratio_up=0.4)
runner.register_hook(hook)
runner.register_hook(IterTimerHook())
# add pavi hook
hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
runner.register_hook(hook)
runner.run([loader], [('train', 1)], 1)
shutil.rmtree(runner.work_dir)
# TODO: use a more elegant way to check values
assert hasattr(hook, 'writer')
calls = [
call('train', {
'learning_rate': 0.01999999999999999,
'momentum': 0.95
}, 0),
call('train', {
'learning_rate': 0.2,
'momentum': 0.85
}, 4),
call('train', {
'learning_rate': 0.155,
'momentum': 0.875
}, 6),
]
hook.writer.add_scalars.assert_has_calls(calls, any_order=True)
def test_cosine_runner_hook():
"""
xdoctest -m tests/test_hooks.py test_cosine_runner_hook
"""
sys.modules['pavi'] = MagicMock()
loader = DataLoader(torch.ones((10, 2)))
runner = _build_demo_runner()
# add momentum scheduler
hook = CosineAnealingMomentumUpdaterHook(
min_momentum_ratio=0.99 / 0.95,
by_epoch=False,
warmup_iters=2,
warmup_ratio=0.9 / 0.95)
runner.register_hook(hook)
# add momentum LR scheduler
hook = CosineAnealingLrUpdaterHook(
by_epoch=False, min_lr_ratio=0, warmup_iters=2, warmup_ratio=0.9)
runner.register_hook(hook)
runner.register_hook(IterTimerHook())
# add pavi hook
hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
runner.register_hook(hook)
runner.run([loader], [('train', 1)], 1)
shutil.rmtree(runner.work_dir)
# TODO: use a more elegant way to check values
assert hasattr(hook, 'writer')
calls = [
call('train', {
'learning_rate': 0.02,
'momentum': 0.95
}, 0),
call('train', {
'learning_rate': 0.01,
'momentum': 0.97
}, 5),
call('train', {
'learning_rate': 0.0004894348370484647,
'momentum': 0.9890211303259032
}, 9)
]
hook.writer.add_scalars.assert_has_calls(calls, any_order=True)
@pytest.mark.parametrize('log_model', (True, False))
def test_mlflow_hook(log_model):
sys.modules['mlflow'] = MagicMock()
sys.modules['mlflow.pytorch'] = MagicMock()
runner = _build_demo_runner()
loader = DataLoader(torch.ones((5, 2)))
hook = MlflowLoggerHook(exp_name='test', log_model=log_model)
runner.register_hook(hook)
runner.run([loader, loader], [('train', 1), ('val', 1)], 1)
shutil.rmtree(runner.work_dir)
hook.mlflow.set_experiment.assert_called_with('test')
hook.mlflow.log_metrics.assert_called_with(
{
'learning_rate': 0.02,
'momentum': 0.95
}, step=5)
if log_model:
hook.mlflow_pytorch.log_model.assert_called_with(
runner.model, 'models')
else:
assert not hook.mlflow_pytorch.log_model.called
def test_wandb_hook():
sys.modules['wandb'] = MagicMock()
runner = _build_demo_runner()
hook = WandbLoggerHook()
loader = DataLoader(torch.ones((5, 2)))
runner.register_hook(hook)
runner.run([loader, loader], [('train', 1), ('val', 1)], 1)
shutil.rmtree(runner.work_dir)
hook.wandb.init.assert_called_with()
hook.wandb.log.assert_called_with({
'learning_rate': 0.02,
'momentum': 0.95
},
step=5)
hook.wandb.join.assert_called_with()
def _build_demo_runner():
class Model(nn.Module):
def __init__(self):
super().__init__()
self.linear = nn.Linear(2, 1)
def forward(self, x):
return self.linear(x)
def train_step(self, x, optimizer, **kwargs):
return dict(loss=self(x))
def val_step(self, x, optimizer, **kwargs):
return dict(loss=self(x))
model = Model()
optimizer = torch.optim.SGD(model.parameters(), lr=0.02, momentum=0.95)
log_config = dict(
interval=1, hooks=[
dict(type='TextLoggerHook'),
])
tmp_dir = tempfile.mkdtemp()
runner = EpochBasedRunner(
model=model,
work_dir=tmp_dir,
optimizer=optimizer,
logger=logging.getLogger())
runner.register_logger_hooks(log_config)
return runner