mirror of https://github.com/open-mmlab/mmcv.git
96 lines
3.4 KiB
Python
96 lines
3.4 KiB
Python
|
import os
|
||
|
|
||
|
import numpy as np
|
||
|
import torch
|
||
|
|
||
|
_USING_PARROTS = True
|
||
|
try:
|
||
|
from parrots.autograd import gradcheck
|
||
|
except ImportError:
|
||
|
from torch.autograd import gradcheck
|
||
|
_USING_PARROTS = False
|
||
|
|
||
|
cur_dir = os.path.dirname(os.path.abspath(__file__))
|
||
|
|
||
|
inputs = [([[[[1., 2.], [3., 4.]]]], [[0., 0., 0., 1., 1.]]),
|
||
|
([[[[1., 2.], [3., 4.]], [[4., 3.], [2.,
|
||
|
1.]]]], [[0., 0., 0., 1., 1.]]),
|
||
|
([[[[1., 2., 5., 6.], [3., 4., 7., 8.], [9., 10., 13., 14.],
|
||
|
[11., 12., 15., 16.]]]], [[0., 0., 0., 3., 3.]])]
|
||
|
outputs = [([[[[1.0, 1.25], [1.5, 1.75]]]], [[[[3.0625, 0.4375],
|
||
|
[0.4375, 0.0625]]]]),
|
||
|
([[[[1.0, 1.25], [1.5, 1.75]],
|
||
|
[[4.0, 3.75], [3.5, 3.25]]]], [[[[3.0625, 0.4375],
|
||
|
[0.4375, 0.0625]],
|
||
|
[[3.0625, 0.4375],
|
||
|
[0.4375, 0.0625]]]]),
|
||
|
([[[[1.9375, 4.75], [7.5625, 10.375]]]],
|
||
|
[[[[0.47265625, 0.42968750, 0.42968750, 0.04296875],
|
||
|
[0.42968750, 0.39062500, 0.39062500, 0.03906250],
|
||
|
[0.42968750, 0.39062500, 0.39062500, 0.03906250],
|
||
|
[0.04296875, 0.03906250, 0.03906250, 0.00390625]]]])]
|
||
|
|
||
|
|
||
|
class TestRoiAlign(object):
|
||
|
|
||
|
def test_roialign_gradcheck(self):
|
||
|
if not torch.cuda.is_available():
|
||
|
return
|
||
|
from mmcv.ops import RoIAlign
|
||
|
pool_h = 2
|
||
|
pool_w = 2
|
||
|
spatial_scale = 1.0
|
||
|
sampling_ratio = 2
|
||
|
|
||
|
for case in inputs:
|
||
|
np_input = np.array(case[0])
|
||
|
np_rois = np.array(case[1])
|
||
|
|
||
|
x = torch.tensor(np_input, device='cuda', requires_grad=True)
|
||
|
rois = torch.tensor(np_rois, device='cuda')
|
||
|
|
||
|
froipool = RoIAlign((pool_h, pool_w), spatial_scale,
|
||
|
sampling_ratio)
|
||
|
|
||
|
if _USING_PARROTS:
|
||
|
pass
|
||
|
# gradcheck(froipool, (x, rois), no_grads=[rois])
|
||
|
else:
|
||
|
gradcheck(froipool, (x, rois), eps=1e-2, atol=1e-2)
|
||
|
|
||
|
def _test_roipool_allclose(self, dtype=torch.float):
|
||
|
if not torch.cuda.is_available():
|
||
|
return
|
||
|
from mmcv.ops import roi_align
|
||
|
pool_h = 2
|
||
|
pool_w = 2
|
||
|
spatial_scale = 1.0
|
||
|
sampling_ratio = 2
|
||
|
|
||
|
for case, output in zip(inputs, outputs):
|
||
|
np_input = np.array(case[0])
|
||
|
np_rois = np.array(case[1])
|
||
|
np_output = np.array(output[0])
|
||
|
np_grad = np.array(output[1])
|
||
|
|
||
|
x = torch.tensor(
|
||
|
np_input, dtype=dtype, device='cuda', requires_grad=True)
|
||
|
rois = torch.tensor(np_rois, dtype=dtype, device='cuda')
|
||
|
|
||
|
output = roi_align(x, rois, (pool_h, pool_w), spatial_scale,
|
||
|
sampling_ratio, 'avg', True)
|
||
|
output.backward(torch.ones_like(output))
|
||
|
assert np.allclose(
|
||
|
output.data.type(torch.float).cpu().numpy(),
|
||
|
np_output,
|
||
|
atol=1e-3)
|
||
|
assert np.allclose(
|
||
|
x.grad.data.type(torch.float).cpu().numpy(),
|
||
|
np_grad,
|
||
|
atol=1e-3)
|
||
|
|
||
|
def test_roipool_allclose(self):
|
||
|
self._test_roipool_allclose(torch.float)
|
||
|
self._test_roipool_allclose(torch.double)
|
||
|
self._test_roipool_allclose(torch.half)
|