mirror of https://github.com/open-mmlab/mmcv.git
69 lines
1.5 KiB
Markdown
69 lines
1.5 KiB
Markdown
|
## 辅助函数
|
|||
|
|
|||
|
### 进度条
|
|||
|
|
|||
|
如果你想跟踪函数批处理任务的进度,可以使用 `track_progress` 。它能以进度条的形式展示任务的完成情况以及剩余任务所需的时间(内部实现为for循环)。
|
|||
|
|
|||
|
```python
|
|||
|
import mmcv
|
|||
|
|
|||
|
def func(item):
|
|||
|
# 执行相关操作
|
|||
|
pass
|
|||
|
|
|||
|
tasks = [item_1, item_2, ..., item_n]
|
|||
|
|
|||
|
mmcv.track_progress(func, tasks)
|
|||
|
```
|
|||
|
|
|||
|
效果如下
|
|||
|

|
|||
|
|
|||
|
如果你想可视化多进程任务的进度,你可以使用 `track_parallel_progress` 。
|
|||
|
|
|||
|
```python
|
|||
|
mmcv.track_parallel_progress(func, tasks, 8) # 8 workers
|
|||
|
```
|
|||
|
|
|||
|

|
|||
|
|
|||
|
如果你想要迭代或枚举数据列表并可视化进度,你可以使用 `track_iter_progress` 。
|
|||
|
|
|||
|
```python
|
|||
|
import mmcv
|
|||
|
|
|||
|
tasks = [item_1, item_2, ..., item_n]
|
|||
|
|
|||
|
for task in mmcv.track_iter_progress(tasks):
|
|||
|
# do something like print
|
|||
|
print(task)
|
|||
|
|
|||
|
for i, task in enumerate(mmcv.track_iter_progress(tasks)):
|
|||
|
# do something like print
|
|||
|
print(i)
|
|||
|
print(task)
|
|||
|
```
|
|||
|
|
|||
|
### 计时器
|
|||
|
|
|||
|
mmcv提供的 `Timer` 可以很方便地计算代码块的执行时间。
|
|||
|
|
|||
|
```python
|
|||
|
import time
|
|||
|
|
|||
|
with mmcv.Timer():
|
|||
|
# simulate some code block
|
|||
|
time.sleep(1)
|
|||
|
```
|
|||
|
|
|||
|
你也可以使用 `since_start()` 和 `since_last_check()` 。前者返回计时器启动后的运行时长,后者返回最近一次查看计时器后的运行时长。
|
|||
|
|
|||
|
```python
|
|||
|
timer = mmcv.Timer()
|
|||
|
# code block 1 here
|
|||
|
print(timer.since_start())
|
|||
|
# code block 2 here
|
|||
|
print(timer.since_last_check())
|
|||
|
print(timer.since_start())
|
|||
|
```
|