mmcv/docs/zh_cn/understand_mmcv/utils.md

69 lines
1.5 KiB
Markdown
Raw Normal View History

## 辅助函数
### 进度条
如果你想跟踪函数批处理任务的进度,可以使用 `track_progress` 。它能以进度条的形式展示任务的完成情况以及剩余任务所需的时间内部实现为for循环
```python
import mmcv
def func(item):
# 执行相关操作
pass
tasks = [item_1, item_2, ..., item_n]
mmcv.track_progress(func, tasks)
```
效果如下
![progress](../../en/_static/progress.*)
如果你想可视化多进程任务的进度,你可以使用 `track_parallel_progress`
```python
mmcv.track_parallel_progress(func, tasks, 8) # 8 workers
```
![progress](../../_static/parallel_progress.*)
如果你想要迭代或枚举数据列表并可视化进度,你可以使用 `track_iter_progress`
```python
import mmcv
tasks = [item_1, item_2, ..., item_n]
for task in mmcv.track_iter_progress(tasks):
# do something like print
print(task)
for i, task in enumerate(mmcv.track_iter_progress(tasks)):
# do something like print
print(i)
print(task)
```
### 计时器
mmcv提供的 `Timer` 可以很方便地计算代码块的执行时间。
```python
import time
with mmcv.Timer():
# simulate some code block
time.sleep(1)
```
你也可以使用 `since_start()``since_last_check()` 。前者返回计时器启动后的运行时长,后者返回最近一次查看计时器后的运行时长。
```python
timer = mmcv.Timer()
# code block 1 here
print(timer.since_start())
# code block 2 here
print(timer.since_last_check())
print(timer.since_start())
```