mmcv/tests/test_runner/test_checkpoint.py

453 lines
17 KiB
Python
Raw Normal View History

# Copyright (c) OpenMMLab. All rights reserved.
import sys
from collections import OrderedDict
from tempfile import TemporaryDirectory
[Feature] Upload checkpoints and logs to ceph (#1375) * [Feature] Choose storage backend by the prefix of filepath * refactor FileClient and add unittest * support loading from different backends * polish docstring * fix unittet * rename attribute str_like_obj to is_str_like_obj * [Docs] Upload checkpoint to petrel oss * add infer_client method * Support uploading checkpoint to petrel oss * add check_exist method * refactor CheckpointHook * support uploading logs to ceph * rename var client to file_client * polish docstring * enhance load_from_ceph * refactor load_from_ceph * refactor TextLoggerHook * change the meaning of out_dir argument * fix test_checkpoint_hook.py * add join_paths method * remove join_paths and add _format_path * enhance unittest * refactor unittest * add a unittest for EvalHook when file backend is petrel * singleton pattern * fix test_clientio.py * deprecate CephBackend * add warning in load_from_ceph * fix type of out_suffix * enhance docstring * refactor unittest for petrel * refactor unittest for disk backend * update io.md * add concat_paths method * fix CI * mock check_exist * improve docstring * improve docstring * improve docstring * improve docstring * add isdir and copyfile for file backend * delete copyfile and add get_local_path * remove isdir method of petrel * fix typo * rename check_exists to exists * refactor code and polish docstring * fix windows ci * add comment and polish docstring * polish docstring * polish docstring * rename _path_mapping to _map_path * polish docstring and fix typo * refactor get_local_path * add list_dir_or_file for FileClient * add list_dir_or_file for PetrelBackend * fix windows ci * Add return docstring * polish docstring * fix typo * fix typo * fix typo * fix error when mocking PetrelBackend * deprecate the conversion from Path to str * add docs for loading checkpoints with FileClient * rename keep_log to keep_local * refactor map_path * add _ensure_methods to ensure methods have been implemented * fix list_dir_or_file * rename _ensure_method_implemented to has_method * refactor * polish information * format information
2021-10-24 14:26:52 +08:00
from unittest.mock import MagicMock, patch
import pytest
import torch
import torch.nn as nn
[Feature] Upload checkpoints and logs to ceph (#1375) * [Feature] Choose storage backend by the prefix of filepath * refactor FileClient and add unittest * support loading from different backends * polish docstring * fix unittet * rename attribute str_like_obj to is_str_like_obj * [Docs] Upload checkpoint to petrel oss * add infer_client method * Support uploading checkpoint to petrel oss * add check_exist method * refactor CheckpointHook * support uploading logs to ceph * rename var client to file_client * polish docstring * enhance load_from_ceph * refactor load_from_ceph * refactor TextLoggerHook * change the meaning of out_dir argument * fix test_checkpoint_hook.py * add join_paths method * remove join_paths and add _format_path * enhance unittest * refactor unittest * add a unittest for EvalHook when file backend is petrel * singleton pattern * fix test_clientio.py * deprecate CephBackend * add warning in load_from_ceph * fix type of out_suffix * enhance docstring * refactor unittest for petrel * refactor unittest for disk backend * update io.md * add concat_paths method * fix CI * mock check_exist * improve docstring * improve docstring * improve docstring * improve docstring * add isdir and copyfile for file backend * delete copyfile and add get_local_path * remove isdir method of petrel * fix typo * rename check_exists to exists * refactor code and polish docstring * fix windows ci * add comment and polish docstring * polish docstring * polish docstring * rename _path_mapping to _map_path * polish docstring and fix typo * refactor get_local_path * add list_dir_or_file for FileClient * add list_dir_or_file for PetrelBackend * fix windows ci * Add return docstring * polish docstring * fix typo * fix typo * fix typo * fix error when mocking PetrelBackend * deprecate the conversion from Path to str * add docs for loading checkpoints with FileClient * rename keep_log to keep_local * refactor map_path * add _ensure_methods to ensure methods have been implemented * fix list_dir_or_file * rename _ensure_method_implemented to has_method * refactor * polish information * format information
2021-10-24 14:26:52 +08:00
import torch.optim as optim
from torch.nn.parallel import DataParallel
[Feature] Upload checkpoints and logs to ceph (#1375) * [Feature] Choose storage backend by the prefix of filepath * refactor FileClient and add unittest * support loading from different backends * polish docstring * fix unittet * rename attribute str_like_obj to is_str_like_obj * [Docs] Upload checkpoint to petrel oss * add infer_client method * Support uploading checkpoint to petrel oss * add check_exist method * refactor CheckpointHook * support uploading logs to ceph * rename var client to file_client * polish docstring * enhance load_from_ceph * refactor load_from_ceph * refactor TextLoggerHook * change the meaning of out_dir argument * fix test_checkpoint_hook.py * add join_paths method * remove join_paths and add _format_path * enhance unittest * refactor unittest * add a unittest for EvalHook when file backend is petrel * singleton pattern * fix test_clientio.py * deprecate CephBackend * add warning in load_from_ceph * fix type of out_suffix * enhance docstring * refactor unittest for petrel * refactor unittest for disk backend * update io.md * add concat_paths method * fix CI * mock check_exist * improve docstring * improve docstring * improve docstring * improve docstring * add isdir and copyfile for file backend * delete copyfile and add get_local_path * remove isdir method of petrel * fix typo * rename check_exists to exists * refactor code and polish docstring * fix windows ci * add comment and polish docstring * polish docstring * polish docstring * rename _path_mapping to _map_path * polish docstring and fix typo * refactor get_local_path * add list_dir_or_file for FileClient * add list_dir_or_file for PetrelBackend * fix windows ci * Add return docstring * polish docstring * fix typo * fix typo * fix typo * fix error when mocking PetrelBackend * deprecate the conversion from Path to str * add docs for loading checkpoints with FileClient * rename keep_log to keep_local * refactor map_path * add _ensure_methods to ensure methods have been implemented * fix list_dir_or_file * rename _ensure_method_implemented to has_method * refactor * polish information * format information
2021-10-24 14:26:52 +08:00
from mmcv.fileio.file_client import PetrelBackend
from mmcv.parallel.registry import MODULE_WRAPPERS
from mmcv.runner.checkpoint import (_load_checkpoint_with_prefix,
get_state_dict, load_checkpoint,
load_from_local, load_from_pavi,
save_checkpoint)
[Feature] Upload checkpoints and logs to ceph (#1375) * [Feature] Choose storage backend by the prefix of filepath * refactor FileClient and add unittest * support loading from different backends * polish docstring * fix unittet * rename attribute str_like_obj to is_str_like_obj * [Docs] Upload checkpoint to petrel oss * add infer_client method * Support uploading checkpoint to petrel oss * add check_exist method * refactor CheckpointHook * support uploading logs to ceph * rename var client to file_client * polish docstring * enhance load_from_ceph * refactor load_from_ceph * refactor TextLoggerHook * change the meaning of out_dir argument * fix test_checkpoint_hook.py * add join_paths method * remove join_paths and add _format_path * enhance unittest * refactor unittest * add a unittest for EvalHook when file backend is petrel * singleton pattern * fix test_clientio.py * deprecate CephBackend * add warning in load_from_ceph * fix type of out_suffix * enhance docstring * refactor unittest for petrel * refactor unittest for disk backend * update io.md * add concat_paths method * fix CI * mock check_exist * improve docstring * improve docstring * improve docstring * improve docstring * add isdir and copyfile for file backend * delete copyfile and add get_local_path * remove isdir method of petrel * fix typo * rename check_exists to exists * refactor code and polish docstring * fix windows ci * add comment and polish docstring * polish docstring * polish docstring * rename _path_mapping to _map_path * polish docstring and fix typo * refactor get_local_path * add list_dir_or_file for FileClient * add list_dir_or_file for PetrelBackend * fix windows ci * Add return docstring * polish docstring * fix typo * fix typo * fix typo * fix error when mocking PetrelBackend * deprecate the conversion from Path to str * add docs for loading checkpoints with FileClient * rename keep_log to keep_local * refactor map_path * add _ensure_methods to ensure methods have been implemented * fix list_dir_or_file * rename _ensure_method_implemented to has_method * refactor * polish information * format information
2021-10-24 14:26:52 +08:00
sys.modules['petrel_client'] = MagicMock()
sys.modules['petrel_client.client'] = MagicMock()
@MODULE_WRAPPERS.register_module()
class DDPWrapper(object):
def __init__(self, module):
self.module = module
class Block(nn.Module):
def __init__(self):
super().__init__()
self.conv = nn.Conv2d(3, 3, 1)
self.norm = nn.BatchNorm2d(3)
class Model(nn.Module):
def __init__(self):
super().__init__()
self.block = Block()
self.conv = nn.Conv2d(3, 3, 1)
class Mockpavimodel(object):
def __init__(self, name='fakename'):
self.name = name
def download(self, file):
pass
def assert_tensor_equal(tensor_a, tensor_b):
assert tensor_a.eq(tensor_b).all()
def test_get_state_dict():
if torch.__version__ == 'parrots':
state_dict_keys = set([
'block.conv.weight', 'block.conv.bias', 'block.norm.weight',
'block.norm.bias', 'block.norm.running_mean',
'block.norm.running_var', 'conv.weight', 'conv.bias'
])
else:
state_dict_keys = set([
'block.conv.weight', 'block.conv.bias', 'block.norm.weight',
'block.norm.bias', 'block.norm.running_mean',
'block.norm.running_var', 'block.norm.num_batches_tracked',
'conv.weight', 'conv.bias'
])
model = Model()
state_dict = get_state_dict(model)
assert isinstance(state_dict, OrderedDict)
assert set(state_dict.keys()) == state_dict_keys
assert_tensor_equal(state_dict['block.conv.weight'],
model.block.conv.weight)
assert_tensor_equal(state_dict['block.conv.bias'], model.block.conv.bias)
assert_tensor_equal(state_dict['block.norm.weight'],
model.block.norm.weight)
assert_tensor_equal(state_dict['block.norm.bias'], model.block.norm.bias)
assert_tensor_equal(state_dict['block.norm.running_mean'],
model.block.norm.running_mean)
assert_tensor_equal(state_dict['block.norm.running_var'],
model.block.norm.running_var)
if torch.__version__ != 'parrots':
assert_tensor_equal(state_dict['block.norm.num_batches_tracked'],
model.block.norm.num_batches_tracked)
assert_tensor_equal(state_dict['conv.weight'], model.conv.weight)
assert_tensor_equal(state_dict['conv.bias'], model.conv.bias)
wrapped_model = DDPWrapper(model)
state_dict = get_state_dict(wrapped_model)
assert isinstance(state_dict, OrderedDict)
assert set(state_dict.keys()) == state_dict_keys
assert_tensor_equal(state_dict['block.conv.weight'],
wrapped_model.module.block.conv.weight)
assert_tensor_equal(state_dict['block.conv.bias'],
wrapped_model.module.block.conv.bias)
assert_tensor_equal(state_dict['block.norm.weight'],
wrapped_model.module.block.norm.weight)
assert_tensor_equal(state_dict['block.norm.bias'],
wrapped_model.module.block.norm.bias)
assert_tensor_equal(state_dict['block.norm.running_mean'],
wrapped_model.module.block.norm.running_mean)
assert_tensor_equal(state_dict['block.norm.running_var'],
wrapped_model.module.block.norm.running_var)
if torch.__version__ != 'parrots':
assert_tensor_equal(
state_dict['block.norm.num_batches_tracked'],
wrapped_model.module.block.norm.num_batches_tracked)
assert_tensor_equal(state_dict['conv.weight'],
wrapped_model.module.conv.weight)
assert_tensor_equal(state_dict['conv.bias'],
wrapped_model.module.conv.bias)
# wrapped inner module
for name, module in wrapped_model.module._modules.items():
module = DataParallel(module)
wrapped_model.module._modules[name] = module
state_dict = get_state_dict(wrapped_model)
assert isinstance(state_dict, OrderedDict)
assert set(state_dict.keys()) == state_dict_keys
assert_tensor_equal(state_dict['block.conv.weight'],
wrapped_model.module.block.module.conv.weight)
assert_tensor_equal(state_dict['block.conv.bias'],
wrapped_model.module.block.module.conv.bias)
assert_tensor_equal(state_dict['block.norm.weight'],
wrapped_model.module.block.module.norm.weight)
assert_tensor_equal(state_dict['block.norm.bias'],
wrapped_model.module.block.module.norm.bias)
assert_tensor_equal(state_dict['block.norm.running_mean'],
wrapped_model.module.block.module.norm.running_mean)
assert_tensor_equal(state_dict['block.norm.running_var'],
wrapped_model.module.block.module.norm.running_var)
if torch.__version__ != 'parrots':
assert_tensor_equal(
state_dict['block.norm.num_batches_tracked'],
wrapped_model.module.block.module.norm.num_batches_tracked)
assert_tensor_equal(state_dict['conv.weight'],
wrapped_model.module.conv.module.weight)
assert_tensor_equal(state_dict['conv.bias'],
wrapped_model.module.conv.module.bias)
def test_load_pavimodel_dist():
sys.modules['pavi'] = MagicMock()
sys.modules['pavi.modelcloud'] = MagicMock()
pavimodel = Mockpavimodel()
import pavi
pavi.modelcloud.get = MagicMock(return_value=pavimodel)
with pytest.raises(AssertionError):
# test pavi prefix
_ = load_from_pavi('MyPaviFolder/checkpoint.pth')
with pytest.raises(FileNotFoundError):
# there is not such checkpoint for us to load
_ = load_from_pavi('pavi://checkpoint.pth')
def test_load_checkpoint_with_prefix():
class FooModule(nn.Module):
def __init__(self):
super().__init__()
self.linear = nn.Linear(1, 2)
self.conv2d = nn.Conv2d(3, 1, 3)
self.conv2d_2 = nn.Conv2d(3, 2, 3)
model = FooModule()
nn.init.constant_(model.linear.weight, 1)
nn.init.constant_(model.linear.bias, 2)
nn.init.constant_(model.conv2d.weight, 3)
nn.init.constant_(model.conv2d.bias, 4)
nn.init.constant_(model.conv2d_2.weight, 5)
nn.init.constant_(model.conv2d_2.bias, 6)
with TemporaryDirectory():
torch.save(model.state_dict(), 'model.pth')
prefix = 'conv2d'
state_dict = _load_checkpoint_with_prefix(prefix, 'model.pth')
assert torch.equal(model.conv2d.state_dict()['weight'],
state_dict['weight'])
assert torch.equal(model.conv2d.state_dict()['bias'],
state_dict['bias'])
# test whether prefix is in pretrained model
with pytest.raises(AssertionError):
prefix = 'back'
_load_checkpoint_with_prefix(prefix, 'model.pth')
def test_load_checkpoint():
import os
import re
import tempfile
class PrefixModel(nn.Module):
def __init__(self):
super().__init__()
self.backbone = Model()
pmodel = PrefixModel()
model = Model()
checkpoint_path = os.path.join(tempfile.gettempdir(), 'checkpoint.pth')
# add prefix
torch.save(model.state_dict(), checkpoint_path)
state_dict = load_checkpoint(
pmodel, checkpoint_path, revise_keys=[(r'^', 'backbone.')])
for key in pmodel.backbone.state_dict().keys():
assert torch.equal(pmodel.backbone.state_dict()[key], state_dict[key])
# strip prefix
torch.save(pmodel.state_dict(), checkpoint_path)
state_dict = load_checkpoint(
model, checkpoint_path, revise_keys=[(r'^backbone\.', '')])
for key in state_dict.keys():
key_stripped = re.sub(r'^backbone\.', '', key)
assert torch.equal(model.state_dict()[key_stripped], state_dict[key])
os.remove(checkpoint_path)
def test_load_checkpoint_metadata():
import os
import tempfile
from mmcv.runner import load_checkpoint, save_checkpoint
class ModelV1(nn.Module):
def __init__(self):
super().__init__()
self.block = Block()
self.conv1 = nn.Conv2d(3, 3, 1)
self.conv2 = nn.Conv2d(3, 3, 1)
nn.init.normal_(self.conv1.weight)
nn.init.normal_(self.conv2.weight)
class ModelV2(nn.Module):
_version = 2
def __init__(self):
super().__init__()
self.block = Block()
self.conv0 = nn.Conv2d(3, 3, 1)
self.conv1 = nn.Conv2d(3, 3, 1)
nn.init.normal_(self.conv0.weight)
nn.init.normal_(self.conv1.weight)
def _load_from_state_dict(self, state_dict, prefix, local_metadata,
*args, **kwargs):
"""load checkpoints."""
# Names of some parameters in has been changed.
version = local_metadata.get('version', None)
if version is None or version < 2:
state_dict_keys = list(state_dict.keys())
convert_map = {'conv1': 'conv0', 'conv2': 'conv1'}
for k in state_dict_keys:
for ori_str, new_str in convert_map.items():
if k.startswith(prefix + ori_str):
new_key = k.replace(ori_str, new_str)
state_dict[new_key] = state_dict[k]
del state_dict[k]
super()._load_from_state_dict(state_dict, prefix, local_metadata,
*args, **kwargs)
model_v1 = ModelV1()
model_v1_conv0_weight = model_v1.conv1.weight.detach()
model_v1_conv1_weight = model_v1.conv2.weight.detach()
model_v2 = ModelV2()
model_v2_conv0_weight = model_v2.conv0.weight.detach()
model_v2_conv1_weight = model_v2.conv1.weight.detach()
ckpt_v1_path = os.path.join(tempfile.gettempdir(), 'checkpoint_v1.pth')
ckpt_v2_path = os.path.join(tempfile.gettempdir(), 'checkpoint_v2.pth')
# Save checkpoint
save_checkpoint(model_v1, ckpt_v1_path)
save_checkpoint(model_v2, ckpt_v2_path)
# test load v1 model
load_checkpoint(model_v2, ckpt_v1_path)
assert torch.allclose(model_v2.conv0.weight, model_v1_conv0_weight)
assert torch.allclose(model_v2.conv1.weight, model_v1_conv1_weight)
# test load v2 model
load_checkpoint(model_v2, ckpt_v2_path)
assert torch.allclose(model_v2.conv0.weight, model_v2_conv0_weight)
assert torch.allclose(model_v2.conv1.weight, model_v2_conv1_weight)
def test_load_classes_name():
import os
import tempfile
from mmcv.runner import load_checkpoint, save_checkpoint
checkpoint_path = os.path.join(tempfile.gettempdir(), 'checkpoint.pth')
model = Model()
save_checkpoint(model, checkpoint_path)
checkpoint = load_checkpoint(model, checkpoint_path)
assert 'meta' in checkpoint and 'CLASSES' not in checkpoint['meta']
model.CLASSES = ('class1', 'class2')
save_checkpoint(model, checkpoint_path)
checkpoint = load_checkpoint(model, checkpoint_path)
assert 'meta' in checkpoint and 'CLASSES' in checkpoint['meta']
assert checkpoint['meta']['CLASSES'] == ('class1', 'class2')
model = Model()
wrapped_model = DDPWrapper(model)
save_checkpoint(wrapped_model, checkpoint_path)
checkpoint = load_checkpoint(wrapped_model, checkpoint_path)
assert 'meta' in checkpoint and 'CLASSES' not in checkpoint['meta']
wrapped_model.module.CLASSES = ('class1', 'class2')
save_checkpoint(wrapped_model, checkpoint_path)
checkpoint = load_checkpoint(wrapped_model, checkpoint_path)
assert 'meta' in checkpoint and 'CLASSES' in checkpoint['meta']
assert checkpoint['meta']['CLASSES'] == ('class1', 'class2')
# remove the temp file
os.remove(checkpoint_path)
def test_checkpoint_loader():
import os
import tempfile
from mmcv.runner import CheckpointLoader, _load_checkpoint, save_checkpoint
checkpoint_path = os.path.join(tempfile.gettempdir(), 'checkpoint.pth')
model = Model()
save_checkpoint(model, checkpoint_path)
checkpoint = _load_checkpoint(checkpoint_path)
assert 'meta' in checkpoint and 'CLASSES' not in checkpoint['meta']
# remove the temp file
os.remove(checkpoint_path)
filenames = [
'http://xx.xx/xx.pth', 'https://xx.xx/xx.pth',
'modelzoo://xx.xx/xx.pth', 'torchvision://xx.xx/xx.pth',
'open-mmlab://xx.xx/xx.pth', 'openmmlab://xx.xx/xx.pth',
'mmcls://xx.xx/xx.pth', 'pavi://xx.xx/xx.pth', 's3://xx.xx/xx.pth',
'ss3://xx.xx/xx.pth', ' s3://xx.xx/xx.pth',
'open-mmlab:s3://xx.xx/xx.pth', 'openmmlab:s3://xx.xx/xx.pth',
'openmmlabs3://xx.xx/xx.pth', ':s3://xx.xx/xx.path'
]
fn_names = [
'load_from_http', 'load_from_http', 'load_from_torchvision',
'load_from_torchvision', 'load_from_openmmlab', 'load_from_openmmlab',
'load_from_mmcls', 'load_from_pavi', 'load_from_ceph',
'load_from_local', 'load_from_local', 'load_from_ceph',
'load_from_ceph', 'load_from_local', 'load_from_local'
]
for filename, fn_name in zip(filenames, fn_names):
loader = CheckpointLoader._get_checkpoint_loader(filename)
assert loader.__name__ == fn_name
@CheckpointLoader.register_scheme(prefixes='ftp://')
def load_from_ftp(filename, map_location):
return dict(filename=filename)
# test register_loader
filename = 'ftp://xx.xx/xx.pth'
loader = CheckpointLoader._get_checkpoint_loader(filename)
assert loader.__name__ == 'load_from_ftp'
def load_from_ftp1(filename, map_location):
return dict(filename=filename)
# test duplicate registered error
with pytest.raises(KeyError):
CheckpointLoader.register_scheme('ftp://', load_from_ftp1)
# test force param
CheckpointLoader.register_scheme('ftp://', load_from_ftp1, force=True)
checkpoint = CheckpointLoader.load_checkpoint(filename)
assert checkpoint['filename'] == filename
# test print function name
loader = CheckpointLoader._get_checkpoint_loader(filename)
assert loader.__name__ == 'load_from_ftp1'
# test sort
@CheckpointLoader.register_scheme(prefixes='a/b')
def load_from_ab(filename, map_location):
return dict(filename=filename)
@CheckpointLoader.register_scheme(prefixes='a/b/c')
def load_from_abc(filename, map_location):
return dict(filename=filename)
filename = 'a/b/c/d'
loader = CheckpointLoader._get_checkpoint_loader(filename)
assert loader.__name__ == 'load_from_abc'
[Feature] Upload checkpoints and logs to ceph (#1375) * [Feature] Choose storage backend by the prefix of filepath * refactor FileClient and add unittest * support loading from different backends * polish docstring * fix unittet * rename attribute str_like_obj to is_str_like_obj * [Docs] Upload checkpoint to petrel oss * add infer_client method * Support uploading checkpoint to petrel oss * add check_exist method * refactor CheckpointHook * support uploading logs to ceph * rename var client to file_client * polish docstring * enhance load_from_ceph * refactor load_from_ceph * refactor TextLoggerHook * change the meaning of out_dir argument * fix test_checkpoint_hook.py * add join_paths method * remove join_paths and add _format_path * enhance unittest * refactor unittest * add a unittest for EvalHook when file backend is petrel * singleton pattern * fix test_clientio.py * deprecate CephBackend * add warning in load_from_ceph * fix type of out_suffix * enhance docstring * refactor unittest for petrel * refactor unittest for disk backend * update io.md * add concat_paths method * fix CI * mock check_exist * improve docstring * improve docstring * improve docstring * improve docstring * add isdir and copyfile for file backend * delete copyfile and add get_local_path * remove isdir method of petrel * fix typo * rename check_exists to exists * refactor code and polish docstring * fix windows ci * add comment and polish docstring * polish docstring * polish docstring * rename _path_mapping to _map_path * polish docstring and fix typo * refactor get_local_path * add list_dir_or_file for FileClient * add list_dir_or_file for PetrelBackend * fix windows ci * Add return docstring * polish docstring * fix typo * fix typo * fix typo * fix error when mocking PetrelBackend * deprecate the conversion from Path to str * add docs for loading checkpoints with FileClient * rename keep_log to keep_local * refactor map_path * add _ensure_methods to ensure methods have been implemented * fix list_dir_or_file * rename _ensure_method_implemented to has_method * refactor * polish information * format information
2021-10-24 14:26:52 +08:00
def test_save_checkpoint(tmp_path):
model = Model()
optimizer = optim.SGD(model.parameters(), lr=0.1, momentum=0.9)
# meta is not a dict
with pytest.raises(TypeError):
save_checkpoint(model, '/path/of/your/filename', meta='invalid type')
# 1. save to disk
filename = str(tmp_path / 'checkpoint1.pth')
save_checkpoint(model, filename)
filename = str(tmp_path / 'checkpoint2.pth')
save_checkpoint(model, filename, optimizer)
filename = str(tmp_path / 'checkpoint3.pth')
save_checkpoint(model, filename, meta={'test': 'test'})
filename = str(tmp_path / 'checkpoint4.pth')
save_checkpoint(model, filename, file_client_args={'backend': 'disk'})
# 2. save to petrel oss
with patch.object(PetrelBackend, 'put') as mock_method:
filename = 's3://path/of/your/checkpoint1.pth'
save_checkpoint(model, filename)
mock_method.assert_called()
with patch.object(PetrelBackend, 'put') as mock_method:
filename = 's3://path//of/your/checkpoint2.pth'
save_checkpoint(
model, filename, file_client_args={'backend': 'petrel'})
mock_method.assert_called()
def test_load_from_local():
import os
home_path = os.path.expanduser('~')
checkpoint_path = os.path.join(
home_path, 'dummy_checkpoint_used_to_test_load_from_local.pth')
model = Model()
save_checkpoint(model, checkpoint_path)
checkpoint = load_from_local(
'~/dummy_checkpoint_used_to_test_load_from_local.pth',
map_location=None)
assert_tensor_equal(checkpoint['state_dict']['block.conv.weight'],
model.block.conv.weight)
os.remove(checkpoint_path)