mmcv/tests/test_ops/test_tensorrt.py

329 lines
9.9 KiB
Python
Raw Normal View History

import os
[Feature] : Add NonMaxSuppression TensorRT Plugin (#787) * start trt plugin prototype * Add test module, modify roialign convertor * finish roi_align trt plugin * fix conflict of RoiAlign and MMCVRoiAlign * fix for lint * fix test tensorrt module * test_tensorrt move import to test func * add except error type * add tensorrt to setup.cfg * code format with yapf * fix for clang-format * move tensorrt_utils to mmcv/tensorrt, add comments, better test module * fix line endings, docformatter * isort init, remove trailing whitespace * add except type * fix setup.py * put import extension inside trt setup * change c++ guard, update pytest script, better setup, etc * sort import with isort * sort import with isort * move init of plugin lib to init_plugins.py * add scatternd, nms plugin (WIP) * fix bugs of trt_nms * add trt nms test module * fix bugs of scatternd * code optimize, add comment about nms kernel * fix transform_if bug of trt_nms_kernel * fix struct name * default nms offset=0, fix bugs of batched input * format with clang-format * onnx preprocess * much better nms implementation, no need to transfer memory between host and device * update preprocess_onnx * parse constant tensor from initializer in preprocess_onnx * update nms * remove unnecessary codes * workspace aligned address * format trt_plugin_helper.hpp * fix index memory bugs * set alignment to 16 by default * fix lint * fix nms offset * fix bugs of preprocess onnx * update test for nms * tensorrt only accept int32, not int64 * update nms comments * fix indexing for scores in nms * update trt temp * make trt-nms compatiable to #803 * fix lint * add docstring to trt_nms_kernel.cuda, add description to preprocess_onnx * add comment to score indexing * fix bugs of max output boxes Co-authored-by: maningsheng <maningsheng@sensetime.com>
2021-02-23 15:09:49 +08:00
from functools import partial
import numpy as np
import onnx
import pytest
import torch
[Feature] : Add NonMaxSuppression TensorRT Plugin (#787) * start trt plugin prototype * Add test module, modify roialign convertor * finish roi_align trt plugin * fix conflict of RoiAlign and MMCVRoiAlign * fix for lint * fix test tensorrt module * test_tensorrt move import to test func * add except error type * add tensorrt to setup.cfg * code format with yapf * fix for clang-format * move tensorrt_utils to mmcv/tensorrt, add comments, better test module * fix line endings, docformatter * isort init, remove trailing whitespace * add except type * fix setup.py * put import extension inside trt setup * change c++ guard, update pytest script, better setup, etc * sort import with isort * sort import with isort * move init of plugin lib to init_plugins.py * add scatternd, nms plugin (WIP) * fix bugs of trt_nms * add trt nms test module * fix bugs of scatternd * code optimize, add comment about nms kernel * fix transform_if bug of trt_nms_kernel * fix struct name * default nms offset=0, fix bugs of batched input * format with clang-format * onnx preprocess * much better nms implementation, no need to transfer memory between host and device * update preprocess_onnx * parse constant tensor from initializer in preprocess_onnx * update nms * remove unnecessary codes * workspace aligned address * format trt_plugin_helper.hpp * fix index memory bugs * set alignment to 16 by default * fix lint * fix nms offset * fix bugs of preprocess onnx * update test for nms * tensorrt only accept int32, not int64 * update nms comments * fix indexing for scores in nms * update trt temp * make trt-nms compatiable to #803 * fix lint * add docstring to trt_nms_kernel.cuda, add description to preprocess_onnx * add comment to score indexing * fix bugs of max output boxes Co-authored-by: maningsheng <maningsheng@sensetime.com>
2021-02-23 15:09:49 +08:00
import torch.nn as nn
try:
from mmcv.tensorrt import (TRTWraper, is_tensorrt_plugin_loaded, onnx2trt,
save_trt_engine)
except ImportError:
pytest.skip(
'TensorRT should be installed from source.', allow_module_level=True)
if not torch.cuda.is_available():
pytest.skip(
'CUDA is required for this test module', allow_module_level=True)
if not is_tensorrt_plugin_loaded():
pytest.skip(
'Test requires to complie TensorRT plugins in mmcv',
allow_module_level=True)
[Feature] : Add NonMaxSuppression TensorRT Plugin (#787) * start trt plugin prototype * Add test module, modify roialign convertor * finish roi_align trt plugin * fix conflict of RoiAlign and MMCVRoiAlign * fix for lint * fix test tensorrt module * test_tensorrt move import to test func * add except error type * add tensorrt to setup.cfg * code format with yapf * fix for clang-format * move tensorrt_utils to mmcv/tensorrt, add comments, better test module * fix line endings, docformatter * isort init, remove trailing whitespace * add except type * fix setup.py * put import extension inside trt setup * change c++ guard, update pytest script, better setup, etc * sort import with isort * sort import with isort * move init of plugin lib to init_plugins.py * add scatternd, nms plugin (WIP) * fix bugs of trt_nms * add trt nms test module * fix bugs of scatternd * code optimize, add comment about nms kernel * fix transform_if bug of trt_nms_kernel * fix struct name * default nms offset=0, fix bugs of batched input * format with clang-format * onnx preprocess * much better nms implementation, no need to transfer memory between host and device * update preprocess_onnx * parse constant tensor from initializer in preprocess_onnx * update nms * remove unnecessary codes * workspace aligned address * format trt_plugin_helper.hpp * fix index memory bugs * set alignment to 16 by default * fix lint * fix nms offset * fix bugs of preprocess onnx * update test for nms * tensorrt only accept int32, not int64 * update nms comments * fix indexing for scores in nms * update trt temp * make trt-nms compatiable to #803 * fix lint * add docstring to trt_nms_kernel.cuda, add description to preprocess_onnx * add comment to score indexing * fix bugs of max output boxes Co-authored-by: maningsheng <maningsheng@sensetime.com>
2021-02-23 15:09:49 +08:00
class WrapFunction(nn.Module):
def __init__(self, wrapped_function):
super(WrapFunction, self).__init__()
self.wrapped_function = wrapped_function
def forward(self, *args, **kwargs):
return self.wrapped_function(*args, **kwargs)
onnx_file = 'tmp.onnx'
trt_file = 'tmp.engine'
def test_roialign():
try:
from mmcv.ops import RoIAlign
except (ImportError, ModuleNotFoundError):
pytest.skip('test requires compilation')
# trt config
fp16_mode = False
max_workspace_size = 1 << 30
# roi align config
pool_h = 2
pool_w = 2
spatial_scale = 1.0
sampling_ratio = 2
inputs = [([[[[1., 2.], [3., 4.]]]], [[0., 0., 0., 1., 1.]]),
([[[[1., 2.], [3., 4.]], [[4., 3.],
[2., 1.]]]], [[0., 0., 0., 1., 1.]]),
([[[[1., 2., 5., 6.], [3., 4., 7., 8.], [9., 10., 13., 14.],
[11., 12., 15., 16.]]]], [[0., 0., 0., 3., 3.]])]
wrapped_model = RoIAlign((pool_w, pool_h), spatial_scale, sampling_ratio,
'avg', True).cuda()
for case in inputs:
np_input = np.array(case[0], dtype=np.float32)
np_rois = np.array(case[1], dtype=np.float32)
input = torch.from_numpy(np_input).cuda()
rois = torch.from_numpy(np_rois).cuda()
with torch.no_grad():
torch.onnx.export(
wrapped_model, (input, rois),
onnx_file,
export_params=True,
keep_initializers_as_inputs=True,
input_names=['input', 'rois'],
output_names=['roi_feat'],
opset_version=11)
onnx_model = onnx.load(onnx_file)
# create trt engine and wraper
opt_shape_dict = {
'input': [list(input.shape),
list(input.shape),
list(input.shape)],
'rois': [list(rois.shape),
list(rois.shape),
list(rois.shape)]
}
trt_engine = onnx2trt(
onnx_model,
opt_shape_dict,
fp16_mode=fp16_mode,
max_workspace_size=max_workspace_size)
save_trt_engine(trt_engine, trt_file)
trt_model = TRTWraper(trt_file, ['input', 'rois'], ['roi_feat'])
with torch.no_grad():
trt_outputs = trt_model({'input': input, 'rois': rois})
trt_roi_feat = trt_outputs['roi_feat']
# compute pytorch_output
with torch.no_grad():
pytorch_roi_feat = wrapped_model(input, rois)
# allclose
if os.path.exists(onnx_file):
os.remove(onnx_file)
if os.path.exists(trt_file):
os.remove(trt_file)
assert torch.allclose(pytorch_roi_feat, trt_roi_feat)
[Feature] : Add NonMaxSuppression TensorRT Plugin (#787) * start trt plugin prototype * Add test module, modify roialign convertor * finish roi_align trt plugin * fix conflict of RoiAlign and MMCVRoiAlign * fix for lint * fix test tensorrt module * test_tensorrt move import to test func * add except error type * add tensorrt to setup.cfg * code format with yapf * fix for clang-format * move tensorrt_utils to mmcv/tensorrt, add comments, better test module * fix line endings, docformatter * isort init, remove trailing whitespace * add except type * fix setup.py * put import extension inside trt setup * change c++ guard, update pytest script, better setup, etc * sort import with isort * sort import with isort * move init of plugin lib to init_plugins.py * add scatternd, nms plugin (WIP) * fix bugs of trt_nms * add trt nms test module * fix bugs of scatternd * code optimize, add comment about nms kernel * fix transform_if bug of trt_nms_kernel * fix struct name * default nms offset=0, fix bugs of batched input * format with clang-format * onnx preprocess * much better nms implementation, no need to transfer memory between host and device * update preprocess_onnx * parse constant tensor from initializer in preprocess_onnx * update nms * remove unnecessary codes * workspace aligned address * format trt_plugin_helper.hpp * fix index memory bugs * set alignment to 16 by default * fix lint * fix nms offset * fix bugs of preprocess onnx * update test for nms * tensorrt only accept int32, not int64 * update nms comments * fix indexing for scores in nms * update trt temp * make trt-nms compatiable to #803 * fix lint * add docstring to trt_nms_kernel.cuda, add description to preprocess_onnx * add comment to score indexing * fix bugs of max output boxes Co-authored-by: maningsheng <maningsheng@sensetime.com>
2021-02-23 15:09:49 +08:00
def test_nms():
try:
import mmcv
from mmcv.ops import nms
except (ImportError, ModuleNotFoundError):
pytest.skip('test requires compilation')
os.environ['ONNX_BACKEND'] = 'MMCVTensorRT'
# trt config
fp16_mode = False
max_workspace_size = 1 << 30
data = mmcv.load('./tests/data/batched_nms_data.pkl')
boxes = data['boxes'].cuda()
scores = data['scores'].cuda()
nms = partial(nms, iou_threshold=0.7, offset=0)
wrapped_model = WrapFunction(nms)
wrapped_model.cpu().eval()
with torch.no_grad():
torch.onnx.export(
wrapped_model, (boxes.detach().cpu(), scores.detach().cpu()),
onnx_file,
export_params=True,
keep_initializers_as_inputs=True,
input_names=['boxes', 'scores'],
output_names=['dets', 'inds'],
opset_version=11)
onnx_model = onnx.load(onnx_file)
# create trt engine and wraper
opt_shape_dict = {
'boxes': [list(boxes.shape),
list(boxes.shape),
list(boxes.shape)],
'scores': [list(scores.shape),
list(scores.shape),
list(scores.shape)]
}
trt_engine = onnx2trt(
onnx_model,
opt_shape_dict,
fp16_mode=fp16_mode,
max_workspace_size=max_workspace_size)
save_trt_engine(trt_engine, trt_file)
trt_model = TRTWraper(trt_file, ['boxes', 'scores'], ['dets', 'inds'])
with torch.no_grad():
trt_outputs = trt_model({'boxes': boxes, 'scores': scores})
trt_dets = trt_outputs['dets']
trt_inds = trt_outputs['inds']
trt_inds = trt_inds.long()
# compute pytorch_output
with torch.no_grad():
pytorch_outputs = wrapped_model(boxes, scores)
pytorch_dets, pytorch_inds = pytorch_outputs
# allclose
if os.path.exists(onnx_file):
os.remove(onnx_file)
if os.path.exists(trt_file):
os.remove(trt_file)
num_boxes = pytorch_dets.shape[0]
trt_dets = trt_dets[:num_boxes, ...]
trt_inds = trt_inds[:num_boxes]
trt_scores = trt_dets[:, 4]
pytorch_scores = pytorch_dets[:, 4]
os.environ.pop('ONNX_BACKEND')
assert torch.allclose(pytorch_scores, trt_scores, atol=1e-3)
assert torch.equal(pytorch_inds, trt_inds)
def test_batched_nms():
try:
import mmcv
from mmcv.ops import batched_nms
except (ImportError, ModuleNotFoundError):
pytest.skip('test requires compilation')
# trt config
os.environ['ONNX_BACKEND'] = 'MMCVTensorRT'
fp16_mode = False
max_workspace_size = 1 << 30
data = mmcv.load('./tests/data/batched_nms_data.pkl')
nms_cfg = dict(type='nms', iou_threshold=0.7)
boxes = data['boxes'].cuda()
scores = data['scores'].cuda()
idxs = data['idxs'].cuda()
class_agnostic = False
nms = partial(batched_nms, nms_cfg=nms_cfg, class_agnostic=class_agnostic)
wrapped_model = WrapFunction(nms)
wrapped_model.cpu().eval()
input_data = (boxes.detach().cpu(), scores.detach().cpu(),
idxs.detach().cpu())
input_names = ['boxes', 'scores', 'idxs']
output_names = ['dets', 'inds']
with torch.no_grad():
torch.onnx.export(
wrapped_model,
input_data,
onnx_file,
export_params=True,
keep_initializers_as_inputs=True,
input_names=input_names,
output_names=output_names,
opset_version=11)
onnx_model = onnx.load(onnx_file)
# create trt engine and wraper
opt_shape_dict = {
'boxes': [list(boxes.shape),
list(boxes.shape),
list(boxes.shape)],
'scores': [list(scores.shape),
list(scores.shape),
list(scores.shape)],
'idxs': [list(idxs.shape),
list(idxs.shape),
list(idxs.shape)]
}
trt_engine = onnx2trt(
onnx_model,
opt_shape_dict,
fp16_mode=fp16_mode,
max_workspace_size=max_workspace_size)
save_trt_engine(trt_engine, trt_file)
trt_model = TRTWraper(trt_file, input_names, output_names)
with torch.no_grad():
trt_outputs = trt_model({
'boxes': boxes,
'scores': scores,
'idxs': idxs
})
trt_dets = trt_outputs['dets']
trt_inds = trt_outputs['inds']
trt_inds = trt_inds.long()
# compute pytorch_output
with torch.no_grad():
pytorch_outputs = wrapped_model(boxes, scores, idxs)
pytorch_dets, pytorch_inds = pytorch_outputs
# allclose
if os.path.exists(onnx_file):
os.remove(onnx_file)
if os.path.exists(trt_file):
os.remove(trt_file)
num_boxes = pytorch_dets.shape[0]
trt_dets = trt_dets[:num_boxes, ...]
trt_inds = trt_inds[:num_boxes]
trt_scores = trt_dets[:, 4]
pytorch_scores = pytorch_dets[:, 4]
os.environ.pop('ONNX_BACKEND')
assert torch.allclose(pytorch_scores, trt_scores)
assert torch.equal(pytorch_inds, trt_inds)
def test_scatternd():
def func(data):
data[:, :-2] += 1
data[:2, :] -= 1
return data
data = torch.zeros(4, 4).cuda()
wrapped_model = WrapFunction(func).eval().cuda()
input_names = ['input']
output_names = ['output']
with torch.no_grad():
torch.onnx.export(
wrapped_model, (data.clone(), ),
onnx_file,
export_params=True,
keep_initializers_as_inputs=True,
input_names=input_names,
output_names=output_names,
opset_version=11)
onnx_model = onnx.load(onnx_file)
# create trt engine and wraper
opt_shape_dict = {
'input': [list(data.shape),
list(data.shape),
list(data.shape)],
}
# trt config
fp16_mode = False
max_workspace_size = 1 << 30
trt_engine = onnx2trt(
onnx_model,
opt_shape_dict,
fp16_mode=fp16_mode,
max_workspace_size=max_workspace_size)
save_trt_engine(trt_engine, trt_file)
trt_model = TRTWraper(trt_file, input_names, output_names)
with torch.no_grad():
trt_outputs = trt_model({'input': data.clone()})
trt_results = trt_outputs['output']
# compute pytorch_output
with torch.no_grad():
pytorch_results = wrapped_model(data.clone())
# allclose
if os.path.exists(onnx_file):
os.remove(onnx_file)
if os.path.exists(trt_file):
os.remove(trt_file)
assert torch.allclose(pytorch_results, trt_results)