mmcv/tests/test_runner/test_eval_hook.py

484 lines
18 KiB
Python
Raw Normal View History

# Copyright (c) OpenMMLab. All rights reserved.
import json
import os.path as osp
[Feature] Upload checkpoints and logs to ceph (#1375) * [Feature] Choose storage backend by the prefix of filepath * refactor FileClient and add unittest * support loading from different backends * polish docstring * fix unittet * rename attribute str_like_obj to is_str_like_obj * [Docs] Upload checkpoint to petrel oss * add infer_client method * Support uploading checkpoint to petrel oss * add check_exist method * refactor CheckpointHook * support uploading logs to ceph * rename var client to file_client * polish docstring * enhance load_from_ceph * refactor load_from_ceph * refactor TextLoggerHook * change the meaning of out_dir argument * fix test_checkpoint_hook.py * add join_paths method * remove join_paths and add _format_path * enhance unittest * refactor unittest * add a unittest for EvalHook when file backend is petrel * singleton pattern * fix test_clientio.py * deprecate CephBackend * add warning in load_from_ceph * fix type of out_suffix * enhance docstring * refactor unittest for petrel * refactor unittest for disk backend * update io.md * add concat_paths method * fix CI * mock check_exist * improve docstring * improve docstring * improve docstring * improve docstring * add isdir and copyfile for file backend * delete copyfile and add get_local_path * remove isdir method of petrel * fix typo * rename check_exists to exists * refactor code and polish docstring * fix windows ci * add comment and polish docstring * polish docstring * polish docstring * rename _path_mapping to _map_path * polish docstring and fix typo * refactor get_local_path * add list_dir_or_file for FileClient * add list_dir_or_file for PetrelBackend * fix windows ci * Add return docstring * polish docstring * fix typo * fix typo * fix typo * fix error when mocking PetrelBackend * deprecate the conversion from Path to str * add docs for loading checkpoints with FileClient * rename keep_log to keep_local * refactor map_path * add _ensure_methods to ensure methods have been implemented * fix list_dir_or_file * rename _ensure_method_implemented to has_method * refactor * polish information * format information
2021-10-24 14:26:52 +08:00
import sys
import tempfile
import unittest.mock as mock
from collections import OrderedDict
from unittest.mock import MagicMock, patch
import pytest
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
[Feature] Upload checkpoints and logs to ceph (#1375) * [Feature] Choose storage backend by the prefix of filepath * refactor FileClient and add unittest * support loading from different backends * polish docstring * fix unittet * rename attribute str_like_obj to is_str_like_obj * [Docs] Upload checkpoint to petrel oss * add infer_client method * Support uploading checkpoint to petrel oss * add check_exist method * refactor CheckpointHook * support uploading logs to ceph * rename var client to file_client * polish docstring * enhance load_from_ceph * refactor load_from_ceph * refactor TextLoggerHook * change the meaning of out_dir argument * fix test_checkpoint_hook.py * add join_paths method * remove join_paths and add _format_path * enhance unittest * refactor unittest * add a unittest for EvalHook when file backend is petrel * singleton pattern * fix test_clientio.py * deprecate CephBackend * add warning in load_from_ceph * fix type of out_suffix * enhance docstring * refactor unittest for petrel * refactor unittest for disk backend * update io.md * add concat_paths method * fix CI * mock check_exist * improve docstring * improve docstring * improve docstring * improve docstring * add isdir and copyfile for file backend * delete copyfile and add get_local_path * remove isdir method of petrel * fix typo * rename check_exists to exists * refactor code and polish docstring * fix windows ci * add comment and polish docstring * polish docstring * polish docstring * rename _path_mapping to _map_path * polish docstring and fix typo * refactor get_local_path * add list_dir_or_file for FileClient * add list_dir_or_file for PetrelBackend * fix windows ci * Add return docstring * polish docstring * fix typo * fix typo * fix typo * fix error when mocking PetrelBackend * deprecate the conversion from Path to str * add docs for loading checkpoints with FileClient * rename keep_log to keep_local * refactor map_path * add _ensure_methods to ensure methods have been implemented * fix list_dir_or_file * rename _ensure_method_implemented to has_method * refactor * polish information * format information
2021-10-24 14:26:52 +08:00
from mmcv.fileio.file_client import PetrelBackend
from mmcv.runner import DistEvalHook as BaseDistEvalHook
from mmcv.runner import EpochBasedRunner
from mmcv.runner import EvalHook as BaseEvalHook
from mmcv.runner import IterBasedRunner
from mmcv.utils import get_logger, scandir
[Feature] Upload checkpoints and logs to ceph (#1375) * [Feature] Choose storage backend by the prefix of filepath * refactor FileClient and add unittest * support loading from different backends * polish docstring * fix unittet * rename attribute str_like_obj to is_str_like_obj * [Docs] Upload checkpoint to petrel oss * add infer_client method * Support uploading checkpoint to petrel oss * add check_exist method * refactor CheckpointHook * support uploading logs to ceph * rename var client to file_client * polish docstring * enhance load_from_ceph * refactor load_from_ceph * refactor TextLoggerHook * change the meaning of out_dir argument * fix test_checkpoint_hook.py * add join_paths method * remove join_paths and add _format_path * enhance unittest * refactor unittest * add a unittest for EvalHook when file backend is petrel * singleton pattern * fix test_clientio.py * deprecate CephBackend * add warning in load_from_ceph * fix type of out_suffix * enhance docstring * refactor unittest for petrel * refactor unittest for disk backend * update io.md * add concat_paths method * fix CI * mock check_exist * improve docstring * improve docstring * improve docstring * improve docstring * add isdir and copyfile for file backend * delete copyfile and add get_local_path * remove isdir method of petrel * fix typo * rename check_exists to exists * refactor code and polish docstring * fix windows ci * add comment and polish docstring * polish docstring * polish docstring * rename _path_mapping to _map_path * polish docstring and fix typo * refactor get_local_path * add list_dir_or_file for FileClient * add list_dir_or_file for PetrelBackend * fix windows ci * Add return docstring * polish docstring * fix typo * fix typo * fix typo * fix error when mocking PetrelBackend * deprecate the conversion from Path to str * add docs for loading checkpoints with FileClient * rename keep_log to keep_local * refactor map_path * add _ensure_methods to ensure methods have been implemented * fix list_dir_or_file * rename _ensure_method_implemented to has_method * refactor * polish information * format information
2021-10-24 14:26:52 +08:00
sys.modules['petrel_client'] = MagicMock()
sys.modules['petrel_client.client'] = MagicMock()
class ExampleDataset(Dataset):
def __init__(self):
self.index = 0
self.eval_result = [1, 4, 3, 7, 2, -3, 4, 6]
def __getitem__(self, idx):
results = dict(x=torch.tensor([1]))
return results
def __len__(self):
return 1
@mock.create_autospec
def evaluate(self, results, logger=None):
pass
class EvalDataset(ExampleDataset):
def evaluate(self, results, logger=None):
acc = self.eval_result[self.index]
output = OrderedDict(
acc=acc, index=self.index, score=acc, loss_top=acc)
self.index += 1
return output
class Model(nn.Module):
def __init__(self):
super().__init__()
self.param = nn.Parameter(torch.tensor([1.0]))
def forward(self, x, **kwargs):
return self.param * x
def train_step(self, data_batch, optimizer, **kwargs):
return {'loss': torch.sum(self(data_batch['x']))}
def val_step(self, data_batch, optimizer, **kwargs):
return {'loss': torch.sum(self(data_batch['x']))}
def _build_epoch_runner():
model = Model()
tmp_dir = tempfile.mkdtemp()
runner = EpochBasedRunner(
model=model, work_dir=tmp_dir, logger=get_logger('demo'))
return runner
def _build_iter_runner():
model = Model()
tmp_dir = tempfile.mkdtemp()
runner = IterBasedRunner(
model=model, work_dir=tmp_dir, logger=get_logger('demo'))
return runner
class EvalHook(BaseEvalHook):
_default_greater_keys = ['acc', 'top']
_default_less_keys = ['loss', 'loss_top']
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
class DistEvalHook(BaseDistEvalHook):
greater_keys = ['acc', 'top']
less_keys = ['loss', 'loss_top']
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def test_eval_hook():
with pytest.raises(AssertionError):
# `save_best` should be a str
test_dataset = Model()
data_loader = DataLoader(test_dataset)
EvalHook(data_loader, save_best=True)
with pytest.raises(TypeError):
# dataloader must be a pytorch DataLoader
test_dataset = Model()
data_loader = [DataLoader(test_dataset)]
EvalHook(data_loader)
with pytest.raises(ValueError):
# key_indicator must be valid when rule_map is None
test_dataset = ExampleDataset()
data_loader = DataLoader(test_dataset)
EvalHook(data_loader, save_best='unsupport')
with pytest.raises(KeyError):
# rule must be in keys of rule_map
test_dataset = ExampleDataset()
data_loader = DataLoader(test_dataset)
EvalHook(data_loader, save_best='auto', rule='unsupport')
# if eval_res is an empty dict, print a warning information
with pytest.warns(UserWarning) as record_warnings:
class _EvalDataset(ExampleDataset):
def evaluate(self, results, logger=None):
return {}
test_dataset = _EvalDataset()
data_loader = DataLoader(test_dataset)
eval_hook = EvalHook(data_loader, save_best='auto')
runner = _build_epoch_runner()
runner.register_hook(eval_hook)
runner.run([data_loader], [('train', 1)], 1)
# Since there will be many warnings thrown, we just need to check if the
# expected exceptions are thrown
expected_message = ('Since `eval_res` is an empty dict, the behavior to '
'save the best checkpoint will be skipped in this '
'evaluation.')
for warning in record_warnings:
if str(warning.message) == expected_message:
break
else:
assert False
test_dataset = ExampleDataset()
loader = DataLoader(test_dataset)
model = Model()
data_loader = DataLoader(test_dataset)
eval_hook = EvalHook(data_loader, save_best=None)
with tempfile.TemporaryDirectory() as tmpdir:
# total_epochs = 1
logger = get_logger('test_eval')
runner = EpochBasedRunner(model=model, work_dir=tmpdir, logger=logger)
runner.register_hook(eval_hook)
runner.run([loader], [('train', 1)], 1)
test_dataset.evaluate.assert_called_with(
test_dataset, [torch.tensor([1])], logger=runner.logger)
assert runner.meta is None or 'best_score' not in runner.meta[
'hook_msgs']
assert runner.meta is None or 'best_ckpt' not in runner.meta[
'hook_msgs']
# when `save_best` is set to 'auto', first metric will be used.
loader = DataLoader(EvalDataset())
model = Model()
data_loader = DataLoader(EvalDataset())
eval_hook = EvalHook(data_loader, interval=1, save_best='auto')
with tempfile.TemporaryDirectory() as tmpdir:
logger = get_logger('test_eval')
runner = EpochBasedRunner(model=model, work_dir=tmpdir, logger=logger)
runner.register_checkpoint_hook(dict(interval=1))
runner.register_hook(eval_hook)
runner.run([loader], [('train', 1)], 8)
ckpt_path = osp.join(tmpdir, 'best_acc_epoch_4.pth')
assert runner.meta['hook_msgs']['best_ckpt'] == ckpt_path
assert osp.exists(ckpt_path)
assert runner.meta['hook_msgs']['best_score'] == 7
# total_epochs = 8, return the best acc and corresponding epoch
loader = DataLoader(EvalDataset())
model = Model()
data_loader = DataLoader(EvalDataset())
eval_hook = EvalHook(data_loader, interval=1, save_best='acc')
with tempfile.TemporaryDirectory() as tmpdir:
logger = get_logger('test_eval')
runner = EpochBasedRunner(model=model, work_dir=tmpdir, logger=logger)
runner.register_checkpoint_hook(dict(interval=1))
runner.register_hook(eval_hook)
runner.run([loader], [('train', 1)], 8)
ckpt_path = osp.join(tmpdir, 'best_acc_epoch_4.pth')
assert runner.meta['hook_msgs']['best_ckpt'] == ckpt_path
assert osp.exists(ckpt_path)
assert runner.meta['hook_msgs']['best_score'] == 7
# total_epochs = 8, return the best loss_top and corresponding epoch
loader = DataLoader(EvalDataset())
model = Model()
data_loader = DataLoader(EvalDataset())
eval_hook = EvalHook(data_loader, interval=1, save_best='loss_top')
with tempfile.TemporaryDirectory() as tmpdir:
logger = get_logger('test_eval')
runner = EpochBasedRunner(model=model, work_dir=tmpdir, logger=logger)
runner.register_checkpoint_hook(dict(interval=1))
runner.register_hook(eval_hook)
runner.run([loader], [('train', 1)], 8)
ckpt_path = osp.join(tmpdir, 'best_loss_top_epoch_6.pth')
assert runner.meta['hook_msgs']['best_ckpt'] == ckpt_path
assert osp.exists(ckpt_path)
assert runner.meta['hook_msgs']['best_score'] == -3
# total_epochs = 8, return the best score and corresponding epoch
data_loader = DataLoader(EvalDataset())
eval_hook = EvalHook(
data_loader, interval=1, save_best='score', rule='greater')
with tempfile.TemporaryDirectory() as tmpdir:
logger = get_logger('test_eval')
runner = EpochBasedRunner(model=model, work_dir=tmpdir, logger=logger)
runner.register_checkpoint_hook(dict(interval=1))
runner.register_hook(eval_hook)
runner.run([loader], [('train', 1)], 8)
ckpt_path = osp.join(tmpdir, 'best_score_epoch_4.pth')
assert runner.meta['hook_msgs']['best_ckpt'] == ckpt_path
assert osp.exists(ckpt_path)
assert runner.meta['hook_msgs']['best_score'] == 7
# total_epochs = 8, return the best score using less compare func
# and indicate corresponding epoch
data_loader = DataLoader(EvalDataset())
eval_hook = EvalHook(data_loader, save_best='acc', rule='less')
with tempfile.TemporaryDirectory() as tmpdir:
logger = get_logger('test_eval')
runner = EpochBasedRunner(model=model, work_dir=tmpdir, logger=logger)
runner.register_checkpoint_hook(dict(interval=1))
runner.register_hook(eval_hook)
runner.run([loader], [('train', 1)], 8)
ckpt_path = osp.join(tmpdir, 'best_acc_epoch_6.pth')
assert runner.meta['hook_msgs']['best_ckpt'] == ckpt_path
assert osp.exists(ckpt_path)
assert runner.meta['hook_msgs']['best_score'] == -3
# Test the EvalHook when resume happened
data_loader = DataLoader(EvalDataset())
eval_hook = EvalHook(data_loader, save_best='acc')
with tempfile.TemporaryDirectory() as tmpdir:
logger = get_logger('test_eval')
runner = EpochBasedRunner(model=model, work_dir=tmpdir, logger=logger)
runner.register_checkpoint_hook(dict(interval=1))
runner.register_hook(eval_hook)
runner.run([loader], [('train', 1)], 2)
old_ckpt_path = osp.join(tmpdir, 'best_acc_epoch_2.pth')
assert runner.meta['hook_msgs']['best_ckpt'] == old_ckpt_path
assert osp.exists(old_ckpt_path)
assert runner.meta['hook_msgs']['best_score'] == 4
resume_from = old_ckpt_path
loader = DataLoader(ExampleDataset())
eval_hook = EvalHook(data_loader, save_best='acc')
runner = EpochBasedRunner(model=model, work_dir=tmpdir, logger=logger)
runner.register_checkpoint_hook(dict(interval=1))
runner.register_hook(eval_hook)
runner.resume(resume_from)
assert runner.meta['hook_msgs']['best_ckpt'] == old_ckpt_path
assert osp.exists(old_ckpt_path)
assert runner.meta['hook_msgs']['best_score'] == 4
runner.run([loader], [('train', 1)], 8)
ckpt_path = osp.join(tmpdir, 'best_acc_epoch_4.pth')
assert runner.meta['hook_msgs']['best_ckpt'] == ckpt_path
assert osp.exists(ckpt_path)
assert runner.meta['hook_msgs']['best_score'] == 7
assert not osp.exists(old_ckpt_path)
# test EvalHook with customer test_fn and greater/less keys
loader = DataLoader(EvalDataset())
model = Model()
data_loader = DataLoader(EvalDataset())
eval_hook = EvalHook(
data_loader,
save_best='acc',
test_fn=mock.MagicMock(return_value={}),
greater_keys=[],
less_keys=['acc'])
with tempfile.TemporaryDirectory() as tmpdir:
logger = get_logger('test_eval')
runner = EpochBasedRunner(model=model, work_dir=tmpdir, logger=logger)
runner.register_checkpoint_hook(dict(interval=1))
runner.register_hook(eval_hook)
runner.run([loader], [('train', 1)], 8)
ckpt_path = osp.join(tmpdir, 'best_acc_epoch_6.pth')
assert runner.meta['hook_msgs']['best_ckpt'] == ckpt_path
assert osp.exists(ckpt_path)
assert runner.meta['hook_msgs']['best_score'] == -3
[Feature] Upload checkpoints and logs to ceph (#1375) * [Feature] Choose storage backend by the prefix of filepath * refactor FileClient and add unittest * support loading from different backends * polish docstring * fix unittet * rename attribute str_like_obj to is_str_like_obj * [Docs] Upload checkpoint to petrel oss * add infer_client method * Support uploading checkpoint to petrel oss * add check_exist method * refactor CheckpointHook * support uploading logs to ceph * rename var client to file_client * polish docstring * enhance load_from_ceph * refactor load_from_ceph * refactor TextLoggerHook * change the meaning of out_dir argument * fix test_checkpoint_hook.py * add join_paths method * remove join_paths and add _format_path * enhance unittest * refactor unittest * add a unittest for EvalHook when file backend is petrel * singleton pattern * fix test_clientio.py * deprecate CephBackend * add warning in load_from_ceph * fix type of out_suffix * enhance docstring * refactor unittest for petrel * refactor unittest for disk backend * update io.md * add concat_paths method * fix CI * mock check_exist * improve docstring * improve docstring * improve docstring * improve docstring * add isdir and copyfile for file backend * delete copyfile and add get_local_path * remove isdir method of petrel * fix typo * rename check_exists to exists * refactor code and polish docstring * fix windows ci * add comment and polish docstring * polish docstring * polish docstring * rename _path_mapping to _map_path * polish docstring and fix typo * refactor get_local_path * add list_dir_or_file for FileClient * add list_dir_or_file for PetrelBackend * fix windows ci * Add return docstring * polish docstring * fix typo * fix typo * fix typo * fix error when mocking PetrelBackend * deprecate the conversion from Path to str * add docs for loading checkpoints with FileClient * rename keep_log to keep_local * refactor map_path * add _ensure_methods to ensure methods have been implemented * fix list_dir_or_file * rename _ensure_method_implemented to has_method * refactor * polish information * format information
2021-10-24 14:26:52 +08:00
# test EvalHook with specified `out_dir`
loader = DataLoader(EvalDataset())
model = Model()
data_loader = DataLoader(EvalDataset())
out_dir = 's3://user/data'
eval_hook = EvalHook(
data_loader, interval=1, save_best='auto', out_dir=out_dir)
with patch.object(PetrelBackend, 'put') as mock_put, \
patch.object(PetrelBackend, 'remove') as mock_remove, \
patch.object(PetrelBackend, 'isfile') as mock_isfile, \
tempfile.TemporaryDirectory() as tmpdir:
logger = get_logger('test_eval')
runner = EpochBasedRunner(model=model, work_dir=tmpdir, logger=logger)
runner.register_checkpoint_hook(dict(interval=1))
runner.register_hook(eval_hook)
runner.run([loader], [('train', 1)], 8)
basename = osp.basename(runner.work_dir.rstrip(osp.sep))
ckpt_path = f'{out_dir}/{basename}/best_acc_epoch_4.pth'
assert runner.meta['hook_msgs']['best_ckpt'] == ckpt_path
assert runner.meta['hook_msgs']['best_score'] == 7
assert mock_put.call_count == 3
assert mock_remove.call_count == 2
assert mock_isfile.call_count == 2
@patch('mmcv.engine.single_gpu_test', MagicMock)
@patch('mmcv.engine.multi_gpu_test', MagicMock)
@pytest.mark.parametrize('EvalHookParam', [EvalHook, DistEvalHook])
@pytest.mark.parametrize('_build_demo_runner,by_epoch',
[(_build_epoch_runner, True),
(_build_iter_runner, False)])
def test_start_param(EvalHookParam, _build_demo_runner, by_epoch):
# create dummy data
dataloader = DataLoader(EvalDataset())
# 0.1. dataloader is not a DataLoader object
with pytest.raises(TypeError):
EvalHookParam(dataloader=MagicMock(), interval=-1)
# 0.2. negative interval
with pytest.raises(ValueError):
EvalHookParam(dataloader, interval=-1)
# 0.3. negative start
with pytest.raises(ValueError):
EvalHookParam(dataloader, start=-1)
# 1. start=None, interval=1: perform evaluation after each epoch.
runner = _build_demo_runner()
evalhook = EvalHookParam(dataloader, interval=1, by_epoch=by_epoch)
evalhook.evaluate = MagicMock()
runner.register_hook(evalhook)
runner.run([dataloader], [('train', 1)], 2)
assert evalhook.evaluate.call_count == 2 # after epoch 1 & 2
# 2. start=1, interval=1: perform evaluation after each epoch.
runner = _build_demo_runner()
evalhook = EvalHookParam(
dataloader, start=1, interval=1, by_epoch=by_epoch)
evalhook.evaluate = MagicMock()
runner.register_hook(evalhook)
runner.run([dataloader], [('train', 1)], 2)
assert evalhook.evaluate.call_count == 2 # after epoch 1 & 2
# 3. start=None, interval=2: perform evaluation after epoch 2, 4, 6, etc
runner = _build_demo_runner()
evalhook = EvalHookParam(dataloader, interval=2, by_epoch=by_epoch)
evalhook.evaluate = MagicMock()
runner.register_hook(evalhook)
runner.run([dataloader], [('train', 1)], 2)
assert evalhook.evaluate.call_count == 1 # after epoch 2
# 4. start=1, interval=2: perform evaluation after epoch 1, 3, 5, etc
runner = _build_demo_runner()
evalhook = EvalHookParam(
dataloader, start=1, interval=2, by_epoch=by_epoch)
evalhook.evaluate = MagicMock()
runner.register_hook(evalhook)
runner.run([dataloader], [('train', 1)], 3)
assert evalhook.evaluate.call_count == 2 # after epoch 1 & 3
# 5. start=0, interval=1: perform evaluation after each epoch and
# before epoch 1.
runner = _build_demo_runner()
evalhook = EvalHookParam(dataloader, start=0, by_epoch=by_epoch)
evalhook.evaluate = MagicMock()
runner.register_hook(evalhook)
runner.run([dataloader], [('train', 1)], 2)
assert evalhook.evaluate.call_count == 3 # before epoch1 and after e1 & e2
# 6. resuming from epoch i, start = x (x<=i), interval =1: perform
# evaluation after each epoch and before the first epoch.
runner = _build_demo_runner()
evalhook = EvalHookParam(dataloader, start=1, by_epoch=by_epoch)
evalhook.evaluate = MagicMock()
runner.register_hook(evalhook)
if by_epoch:
runner._epoch = 2
else:
runner._iter = 2
runner.run([dataloader], [('train', 1)], 3)
assert evalhook.evaluate.call_count == 2 # before & after epoch 3
# 7. resuming from epoch i, start = i+1/None, interval =1: perform
# evaluation after each epoch.
runner = _build_demo_runner()
evalhook = EvalHookParam(dataloader, start=2, by_epoch=by_epoch)
evalhook.evaluate = MagicMock()
runner.register_hook(evalhook)
if by_epoch:
runner._epoch = 1
else:
runner._iter = 1
runner.run([dataloader], [('train', 1)], 3)
assert evalhook.evaluate.call_count == 2 # after epoch 2 & 3
@pytest.mark.parametrize('runner,by_epoch,eval_hook_priority',
[(EpochBasedRunner, True, 'NORMAL'),
(EpochBasedRunner, True, 'LOW'),
(IterBasedRunner, False, 'LOW')])
def test_logger(runner, by_epoch, eval_hook_priority):
loader = DataLoader(EvalDataset())
model = Model()
data_loader = DataLoader(EvalDataset())
eval_hook = EvalHook(
data_loader, interval=1, by_epoch=by_epoch, save_best='acc')
with tempfile.TemporaryDirectory() as tmpdir:
logger = get_logger('test_logger')
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
runner = EpochBasedRunner(
model=model, optimizer=optimizer, work_dir=tmpdir, logger=logger)
runner.register_logger_hooks(
dict(
interval=1,
hooks=[dict(type='TextLoggerHook', by_epoch=by_epoch)]))
runner.register_timer_hook(dict(type='IterTimerHook'))
runner.register_hook(eval_hook, priority=eval_hook_priority)
runner.run([loader], [('train', 1)], 1)
path = osp.join(tmpdir, next(scandir(tmpdir, '.json')))
with open(path) as fr:
fr.readline() # skip the first line which is `hook_msg`
train_log = json.loads(fr.readline())
assert train_log['mode'] == 'train' and 'time' in train_log
val_log = json.loads(fr.readline())
assert val_log['mode'] == 'val' and 'time' not in val_log