diff --git a/docs/tensorrt_custom_ops.md b/docs/tensorrt_custom_ops.md
index 0b5b1b83a..1ef48ece0 100644
--- a/docs/tensorrt_custom_ops.md
+++ b/docs/tensorrt_custom_ops.md
@@ -51,6 +51,12 @@
- [Inputs](#inputs-7)
- [Outputs](#outputs-7)
- [Type Constraints](#type-constraints-7)
+ - [MMCVModulatedDeformConv2d](#mmcvmodulateddeformconv2d)
+ - [Description](#description-8)
+ - [Parameters](#parameters-8)
+ - [Inputs](#inputs-8)
+ - [Outputs](#outputs-8)
+ - [Type Constraints](#type-constraints-8)
@@ -345,3 +351,45 @@ y = scale * (x - mean) / sqrt(variance + epsilon) + B, where mean and variance a
### Type Constraints
- T:tensor(float32, Linear)
+
+## MMCVModulatedDeformConv2d
+
+### Description
+
+Perform Modulated Deformable Convolution on input feature, read [Deformable ConvNets v2: More Deformable, Better Results](https://arxiv.org/abs/1811.11168?from=timeline) for detail.
+
+### Parameters
+
+| Type | Parameter | Description |
+| -------------- | ------------------ | ------------------------------------------------------------------------------------- |
+| `list of ints` | `stride` | The stride of the convolving kernel. (sH, sW) |
+| `list of ints` | `padding` | Paddings on both sides of the input. (padH, padW) |
+| `list of ints` | `dilation` | The spacing between kernel elements. (dH, dW) |
+| `int` | `deformable_group` | Groups of deformable offset. |
+| `int` | `group` | Split input into groups. `input_channel` should be divisible by the number of groups. |
+
+### Inputs
+
+
+- inputs[0]: T
+- Input feature; 4-D tensor of shape (N, C, inH, inW), where N is the batch size, C is the number of channels, inH and inW are the height and width of the data.
+- inputs[1]: T
+- Input offset; 4-D tensor of shape (N, deformable_group* 2* kH* kW, outH, outW), where kH and kW is the height and width of weight, outH and outW is the height and width of offset and output.
+- inputs[2]: T
+- Input mask; 4-D tensor of shape (N, deformable_group* kH* kW, outH, outW), where kH and kW is the height and width of weight, outH and outW is the height and width of offset and output.
+- inputs[3]: T
+- Input weight; 4-D tensor of shape (output_channel, input_channel, kH, kW).
+- inputs[4]: T, optional
+- Input weight; 1-D tensor of shape (output_channel).
+
+
+### Outputs
+
+
+- outputs[0]: T
+- Output feature; 4-D tensor of shape (N, output_channel, outH, outW).
+
+
+### Type Constraints
+
+- T:tensor(float32, Linear)
diff --git a/docs/tensorrt_plugin.md b/docs/tensorrt_plugin.md
index 0da0d1b23..325c79762 100644
--- a/docs/tensorrt_plugin.md
+++ b/docs/tensorrt_plugin.md
@@ -31,9 +31,10 @@ To ease the deployment of trained models with custom operators from `mmcv.ops` u
| NonMaxSuppression | [NonMaxSuppression](./tensorrt_custom_ops.md#nonmaxsuppression) | 1.3.0 |
| MMCVDeformConv2d | [MMCVDeformConv2d](./tensorrt_custom_ops.md#mmcvdeformconv2d) | 1.3.0 |
| grid_sampler | [grid_sampler](./tensorrt_custom_ops.md#grid-sampler) | 1.3.1 |
-| cummax | [cummax](./tensorrt_custom_ops.md#cummax) | master |
-| cummin | [cummin](./tensorrt_custom_ops.md#cummin) | master |
-| MMCVInstanceNormalization | [MMCVInstanceNormalization](./tensorrt_custom_ops.md#mmcvinstancenormalization) | master |
+| cummax | [cummax](./tensorrt_custom_ops.md#cummax) | 1.3.5 |
+| cummin | [cummin](./tensorrt_custom_ops.md#cummin) | 1.3.5 |
+| MMCVInstanceNormalization | [MMCVInstanceNormalization](./tensorrt_custom_ops.md#mmcvinstancenormalization) | 1.3.5 |
+| MMCVModulatedDeformConv2d | [MMCVModulatedDeformConv2d](./tensorrt_custom_ops.md#mmcvmodulateddeformconv2d) | master |
Notes
diff --git a/mmcv/ops/csrc/modulated_deform_conv_cuda_kernel.cuh b/mmcv/ops/csrc/modulated_deform_conv_cuda_kernel.cuh
index 04bf5c308..ca0e91a25 100644
--- a/mmcv/ops/csrc/modulated_deform_conv_cuda_kernel.cuh
+++ b/mmcv/ops/csrc/modulated_deform_conv_cuda_kernel.cuh
@@ -66,11 +66,16 @@
#ifndef MODULATED_DEFORM_CONV_CUDA_KERNEL_CUH
#define MODULATED_DEFORM_CONV_CUDA_KERNEL_CUH
+#include
+#ifdef MMCV_WITH_TRT
+#include "common_cuda_helper.hpp"
+#else // MMCV_WITH_TRT
#ifdef MMCV_USE_PARROTS
#include "parrots_cuda_helper.hpp"
-#else
+#else // MMCV_USE_PARROTS
#include "pytorch_cuda_helper.hpp"
-#endif
+#endif // MMCV_USE_PARROTS
+#endif // MMCV_WITH_TRT
template
__device__ T dmcn_im2col_bilinear(const T *input, const int data_width,
diff --git a/mmcv/ops/csrc/tensorrt/plugins/trt_cuda_helper.cu b/mmcv/ops/csrc/tensorrt/plugins/trt_cuda_helper.cu
index 5b85a4e56..8ddcca970 100644
--- a/mmcv/ops/csrc/tensorrt/plugins/trt_cuda_helper.cu
+++ b/mmcv/ops/csrc/tensorrt/plugins/trt_cuda_helper.cu
@@ -1,3 +1,5 @@
+#include
+
#include "common_cuda_helper.hpp"
#include "trt_cuda_helper.cuh"
#include "trt_plugin_helper.hpp"
@@ -64,3 +66,25 @@ void memcpyPermute(scalar_t *dst, const scalar_t *src, int *src_size,
template void memcpyPermute(float *dst, const float *src, int *src_size,
int *permute, int src_dim,
cudaStream_t stream);
+
+template <>
+cublasStatus_t cublasGemmWrap(cublasHandle_t handle,
+ cublasOperation_t transa,
+ cublasOperation_t transb, int m, int n,
+ int k, const float *alpha, const float *A,
+ int lda, const float *B, int ldb,
+ const float *beta, float *C, int ldc) {
+ return cublasSgemm(handle, transa, transb, m, n, k, alpha, A, lda, B, ldb,
+ beta, C, ldc);
+}
+
+template <>
+cublasStatus_t cublasGemmWrap(cublasHandle_t handle,
+ cublasOperation_t transa,
+ cublasOperation_t transb, int m, int n,
+ int k, const half *alpha, const half *A,
+ int lda, const half *B, int ldb,
+ const half *beta, half *C, int ldc) {
+ return cublasHgemm(handle, transa, transb, m, n, k, alpha, A, lda, B, ldb,
+ beta, C, ldc);
+}
diff --git a/mmcv/ops/csrc/tensorrt/plugins/trt_deform_conv.cpp b/mmcv/ops/csrc/tensorrt/plugins/trt_deform_conv.cpp
index 988e9bc46..fa008e419 100644
--- a/mmcv/ops/csrc/tensorrt/plugins/trt_deform_conv.cpp
+++ b/mmcv/ops/csrc/tensorrt/plugins/trt_deform_conv.cpp
@@ -32,9 +32,7 @@ DeformableConvPluginDynamic::DeformableConvPluginDynamic(
mDilation(dilation),
mDeformableGroup(deformableGroup),
mGroup(group),
- mIm2colStep(im2colStep) {
- cublasCreate(&m_cublas_handle);
-}
+ mIm2colStep(im2colStep) {}
DeformableConvPluginDynamic::DeformableConvPluginDynamic(const std::string name,
const void *data,
@@ -46,12 +44,8 @@ DeformableConvPluginDynamic::DeformableConvPluginDynamic(const std::string name,
deserialize_value(&data, &length, &mDeformableGroup);
deserialize_value(&data, &length, &mGroup);
deserialize_value(&data, &length, &mIm2colStep);
- cublasCreate(&m_cublas_handle);
-}
-DeformableConvPluginDynamic::~DeformableConvPluginDynamic() {
- // destroy cublas handle
- cublasDestroy(m_cublas_handle);
}
+DeformableConvPluginDynamic::~DeformableConvPluginDynamic() {}
nvinfer1::IPluginV2DynamicExt *DeformableConvPluginDynamic::clone() const {
DeformableConvPluginDynamic *plugin =
@@ -127,11 +121,6 @@ int DeformableConvPluginDynamic::enqueue(
const nvinfer1::PluginTensorDesc *inputDesc,
const nvinfer1::PluginTensorDesc *outputDesc, const void *const *inputs,
void *const *outputs, void *workSpace, cudaStream_t stream) {
- if (m_cuda_stream != stream) {
- cublasSetStream(m_cublas_handle, stream);
- m_cuda_stream = stream;
- }
-
int batch_size = inputDesc[0].dims.d[0];
int inputChannel = inputDesc[0].dims.d[1];
int inputHeight = inputDesc[0].dims.d[2];
@@ -204,6 +193,14 @@ void DeformableConvPluginDynamic::destroy() {
delete this;
}
+void DeformableConvPluginDynamic::attachToContext(
+ cudnnContext *cudnnContext, cublasContext *cublasContext,
+ nvinfer1::IGpuAllocator *gpuAllocator) {
+ m_cublas_handle = cublasContext;
+}
+
+void DeformableConvPluginDynamic::detachFromContext() {}
+
void DeformableConvPluginDynamic::setPluginNamespace(const char *libNamespace) {
mNamespace = libNamespace;
}
diff --git a/mmcv/ops/csrc/tensorrt/plugins/trt_deform_conv_kernel.cu b/mmcv/ops/csrc/tensorrt/plugins/trt_deform_conv_kernel.cu
index 36a63dea9..b5eefa6e7 100644
--- a/mmcv/ops/csrc/tensorrt/plugins/trt_deform_conv_kernel.cu
+++ b/mmcv/ops/csrc/tensorrt/plugins/trt_deform_conv_kernel.cu
@@ -1,4 +1,3 @@
-#include
#include
#include "common_cuda_helper.hpp"
@@ -32,38 +31,6 @@ void trt_deformable_im2col(const T* data_input, const T* data_offset,
cudaCheckError();
}
-// used to switch gemm between fp32 and fp16
-template
-cublasStatus_t cublasGemmWrap(cublasHandle_t handle, cublasOperation_t transa,
- cublasOperation_t transb, int m, int n, int k,
- const scalar_t* alpha, const scalar_t* A, int lda,
- const scalar_t* B, int ldb, const scalar_t* beta,
- scalar_t* C, int ldc) {
- return CUBLAS_STATUS_INTERNAL_ERROR;
-}
-
-template <>
-cublasStatus_t cublasGemmWrap(cublasHandle_t handle,
- cublasOperation_t transa,
- cublasOperation_t transb, int m, int n,
- int k, const float* alpha, const float* A,
- int lda, const float* B, int ldb,
- const float* beta, float* C, int ldc) {
- cublasSgemm(handle, transa, transb, m, n, k, alpha, A, lda, B, ldb, beta, C,
- ldc);
-}
-
-template <>
-cublasStatus_t cublasGemmWrap(cublasHandle_t handle,
- cublasOperation_t transa,
- cublasOperation_t transb, int m, int n,
- int k, const half* alpha, const half* A,
- int lda, const half* B, int ldb,
- const half* beta, half* C, int ldc) {
- cublasHgemm(handle, transa, transb, m, n, k, alpha, A, lda, B, ldb, beta, C,
- ldc);
-}
-
template
void DeformConvForwardCUDAKernelLauncher(
const scalar_t* input, const scalar_t* weight, const scalar_t* offset,
diff --git a/mmcv/ops/csrc/tensorrt/plugins/trt_modulated_deform_conv.cpp b/mmcv/ops/csrc/tensorrt/plugins/trt_modulated_deform_conv.cpp
new file mode 100644
index 000000000..dc5f96052
--- /dev/null
+++ b/mmcv/ops/csrc/tensorrt/plugins/trt_modulated_deform_conv.cpp
@@ -0,0 +1,307 @@
+#include "trt_modulated_deform_conv.hpp"
+
+#include
+
+#include
+
+#include "trt_serialize.hpp"
+
+void ModulatedDeformConvForwardCUDAKernelLauncher_float(
+ const float *input, const float *weight, const float *bias,
+ const float *offset, const float *mask, float *output, void *workspace,
+ int batch, int channels, int height, int width, int channels_out,
+ int kernel_w, int kernel_h, int stride_w, int stride_h, int pad_w,
+ int pad_h, int dilation_w, int dilation_h, int group, int deformable_group,
+ int im2col_step, cublasHandle_t cublas_handle, cudaStream_t stream);
+
+namespace {
+static const char *PLUGIN_VERSION{"1"};
+static const char *PLUGIN_NAME{"MMCVModulatedDeformConv2d"};
+} // namespace
+
+nvinfer1::PluginFieldCollection
+ ModulatedDeformableConvPluginDynamicCreator::mFC{};
+std::vector
+ ModulatedDeformableConvPluginDynamicCreator::mPluginAttributes;
+
+ModulatedDeformableConvPluginDynamic::ModulatedDeformableConvPluginDynamic(
+ const std::string &name, const nvinfer1::Dims stride,
+ const nvinfer1::Dims padding, const nvinfer1::Dims dilation,
+ const int deformableGroup, const int group)
+ : mLayerName(name),
+ mStride(stride),
+ mPadding(padding),
+ mDilation(dilation),
+ mDeformableGroup(deformableGroup),
+ mGroup(group) {
+ mWithBias = false;
+}
+
+ModulatedDeformableConvPluginDynamic::ModulatedDeformableConvPluginDynamic(
+ const std::string name, const void *data, size_t length)
+ : mLayerName(name) {
+ deserialize_value(&data, &length, &mStride);
+ deserialize_value(&data, &length, &mPadding);
+ deserialize_value(&data, &length, &mDilation);
+ deserialize_value(&data, &length, &mDeformableGroup);
+ deserialize_value(&data, &length, &mGroup);
+ mWithBias = false;
+}
+ModulatedDeformableConvPluginDynamic::~ModulatedDeformableConvPluginDynamic() {}
+
+nvinfer1::IPluginV2DynamicExt *ModulatedDeformableConvPluginDynamic::clone()
+ const {
+ ModulatedDeformableConvPluginDynamic *plugin =
+ new ModulatedDeformableConvPluginDynamic(
+ mLayerName, mStride, mPadding, mDilation, mDeformableGroup, mGroup);
+ plugin->setPluginNamespace(getPluginNamespace());
+
+ return plugin;
+}
+
+nvinfer1::DimsExprs ModulatedDeformableConvPluginDynamic::getOutputDimensions(
+ int outputIndex, const nvinfer1::DimsExprs *inputs, int nbInputs,
+ nvinfer1::IExprBuilder &exprBuilder) {
+ nvinfer1::DimsExprs ret;
+ ret.nbDims = 4;
+ ret.d[0] = inputs[0].d[0];
+ ret.d[1] = inputs[2].d[0];
+
+ ret.d[2] = inputs[1].d[2];
+ ret.d[3] = inputs[1].d[3];
+
+ return ret;
+}
+
+bool ModulatedDeformableConvPluginDynamic::supportsFormatCombination(
+ int pos, const nvinfer1::PluginTensorDesc *inOut, int nbInputs,
+ int nbOutputs) {
+ if (pos == 0) {
+ return (inOut[pos].type == nvinfer1::DataType::kFLOAT &&
+ inOut[pos].format == nvinfer1::TensorFormat::kLINEAR);
+
+ } else {
+ return inOut[pos].type == inOut[0].type &&
+ inOut[pos].format == inOut[0].format;
+ }
+}
+
+void ModulatedDeformableConvPluginDynamic::configurePlugin(
+ const nvinfer1::DynamicPluginTensorDesc *inputs, int nbInputs,
+ const nvinfer1::DynamicPluginTensorDesc *outputs, int nbOutputs) {
+ if (nbInputs == 5) {
+ mWithBias = true;
+ }
+}
+
+size_t ModulatedDeformableConvPluginDynamic::getWorkspaceSize(
+ const nvinfer1::PluginTensorDesc *inputs, int nbInputs,
+ const nvinfer1::PluginTensorDesc *outputs, int nbOutputs) const {
+ int sizeof_dtype = mmcv::getElementSize(outputs[0].type);
+
+ int batch_size = inputs[0].dims.d[0];
+ int nInputPlane = inputs[0].dims.d[1];
+ int inputHeight = inputs[0].dims.d[2];
+ int inputWidth = inputs[0].dims.d[3];
+
+ int nOutputPlane = outputs[0].dims.d[1];
+ int outputHeight = outputs[0].dims.d[2];
+ int outputWidth = outputs[0].dims.d[3];
+
+ int kW = inputs[3].dims.d[2];
+ int kH = inputs[3].dims.d[3];
+ int im2col_step = std::min(32, batch_size);
+
+ size_t col_size = mmcv::getAlignedSize(nInputPlane * kW * kH * outputHeight *
+ outputWidth * sizeof_dtype);
+
+ return col_size;
+}
+
+int ModulatedDeformableConvPluginDynamic::enqueue(
+ const nvinfer1::PluginTensorDesc *inputDesc,
+ const nvinfer1::PluginTensorDesc *outputDesc, const void *const *inputs,
+ void *const *outputs, void *workSpace, cudaStream_t stream) {
+ int batch = inputDesc[0].dims.d[0];
+ int channels = inputDesc[0].dims.d[1];
+ int height = inputDesc[0].dims.d[2];
+ int width = inputDesc[0].dims.d[3];
+ int channels_out = outputDesc[0].dims.d[1];
+ int kernel_h = inputDesc[3].dims.d[2];
+ int kernel_w = inputDesc[3].dims.d[3];
+
+ const void *x = inputs[0];
+ const void *offset = inputs[1];
+ const void *mask = inputs[2];
+ const void *weight = inputs[3];
+ const void *bias = mWithBias ? inputs[4] : nullptr;
+ void *output = outputs[0];
+ int im2col_step = std::min(batch, 32);
+
+ // TODO: add fp16 support
+ auto data_type = inputDesc[0].type;
+ switch (data_type) {
+ case nvinfer1::DataType::kFLOAT:
+ ModulatedDeformConvForwardCUDAKernelLauncher_float(
+ (float *)x, (float *)weight, (float *)bias, (float *)offset,
+ (float *)mask, (float *)output, workSpace, batch, channels, height,
+ width, channels_out, kernel_w, kernel_h, mStride.d[0], mStride.d[1],
+ mPadding.d[0], mPadding.d[1], mDilation.d[0], mDilation.d[1], mGroup,
+ mDeformableGroup, im2col_step, m_cublas_handle, stream);
+ break;
+ default:
+ return 1;
+ break;
+ }
+
+ return 0;
+}
+
+nvinfer1::DataType ModulatedDeformableConvPluginDynamic::getOutputDataType(
+ int index, const nvinfer1::DataType *inputTypes, int nbInputs) const {
+ return inputTypes[0];
+}
+
+// IPluginV2 Methods
+const char *ModulatedDeformableConvPluginDynamic::getPluginType() const {
+ return PLUGIN_NAME;
+}
+
+const char *ModulatedDeformableConvPluginDynamic::getPluginVersion() const {
+ return PLUGIN_VERSION;
+}
+
+int ModulatedDeformableConvPluginDynamic::getNbOutputs() const { return 1; }
+
+int ModulatedDeformableConvPluginDynamic::initialize() { return 0; }
+
+void ModulatedDeformableConvPluginDynamic::terminate() {}
+
+size_t ModulatedDeformableConvPluginDynamic::getSerializationSize() const {
+ return sizeof(mStride) + sizeof(mPadding) + sizeof(mDilation) +
+ sizeof(mDeformableGroup) + sizeof(mGroup);
+}
+
+void ModulatedDeformableConvPluginDynamic::serialize(void *buffer) const {
+ serialize_value(&buffer, mStride);
+ serialize_value(&buffer, mPadding);
+ serialize_value(&buffer, mDilation);
+ serialize_value(&buffer, mDeformableGroup);
+ serialize_value(&buffer, mGroup);
+}
+
+void ModulatedDeformableConvPluginDynamic::destroy() {
+ // This gets called when the network containing plugin is destroyed
+ delete this;
+}
+
+void ModulatedDeformableConvPluginDynamic::attachToContext(
+ cudnnContext *cudnnContext, cublasContext *cublasContext,
+ nvinfer1::IGpuAllocator *gpuAllocator) {
+ m_cublas_handle = cublasContext;
+}
+
+void ModulatedDeformableConvPluginDynamic::detachFromContext() {}
+
+void ModulatedDeformableConvPluginDynamic::setPluginNamespace(
+ const char *libNamespace) {
+ mNamespace = libNamespace;
+}
+
+const char *ModulatedDeformableConvPluginDynamic::getPluginNamespace() const {
+ return mNamespace.c_str();
+}
+
+////////////////////// creator /////////////////////////////
+
+ModulatedDeformableConvPluginDynamicCreator::
+ ModulatedDeformableConvPluginDynamicCreator() {
+ mPluginAttributes.emplace_back(nvinfer1::PluginField("stride"));
+ mPluginAttributes.emplace_back(nvinfer1::PluginField("padding"));
+ mPluginAttributes.emplace_back(nvinfer1::PluginField("dilation"));
+ mPluginAttributes.emplace_back(nvinfer1::PluginField("groups"));
+ mPluginAttributes.emplace_back(nvinfer1::PluginField("deform_groups"));
+ mFC.nbFields = mPluginAttributes.size();
+ mFC.fields = mPluginAttributes.data();
+}
+
+const char *ModulatedDeformableConvPluginDynamicCreator::getPluginName() const {
+ return PLUGIN_NAME;
+}
+
+const char *ModulatedDeformableConvPluginDynamicCreator::getPluginVersion()
+ const {
+ return PLUGIN_VERSION;
+}
+
+const nvinfer1::PluginFieldCollection *
+ModulatedDeformableConvPluginDynamicCreator::getFieldNames() {
+ return &mFC;
+}
+
+nvinfer1::IPluginV2 *ModulatedDeformableConvPluginDynamicCreator::createPlugin(
+ const char *name, const nvinfer1::PluginFieldCollection *fc) {
+ nvinfer1::Dims stride{2, {1, 1}};
+ nvinfer1::Dims padding{2, {0, 0}};
+ nvinfer1::Dims dilation{2, {1, 1}};
+ int deformableGroup = 1;
+ int group = 1;
+
+ for (int i = 0; i < fc->nbFields; i++) {
+ if (fc->fields[i].data == nullptr) {
+ continue;
+ }
+ std::string field_name(fc->fields[i].name);
+
+ if (field_name.compare("deformable_group") == 0) {
+ deformableGroup = static_cast(fc->fields[i].data)[0];
+ }
+
+ if (field_name.compare("group") == 0) {
+ group = static_cast(fc->fields[i].data)[0];
+ }
+
+ if (field_name.compare("stride") == 0) {
+ stride.nbDims = 2;
+ stride.d[0] = static_cast(fc->fields[i].data)[0];
+ stride.d[1] = static_cast(fc->fields[i].data)[1];
+ }
+
+ if (field_name.compare("padding") == 0) {
+ padding.nbDims = 2;
+ padding.d[0] = static_cast(fc->fields[i].data)[0];
+ padding.d[1] = static_cast(fc->fields[i].data)[1];
+ }
+
+ if (field_name.compare("dilation") == 0) {
+ dilation.nbDims = 2;
+ dilation.d[0] = static_cast(fc->fields[i].data)[0];
+ dilation.d[1] = static_cast(fc->fields[i].data)[1];
+ }
+ }
+
+ ModulatedDeformableConvPluginDynamic *plugin =
+ new ModulatedDeformableConvPluginDynamic(name, stride, padding, dilation,
+ deformableGroup, group);
+ plugin->setPluginNamespace(getPluginNamespace());
+ return plugin;
+}
+
+nvinfer1::IPluginV2 *
+ModulatedDeformableConvPluginDynamicCreator::deserializePlugin(
+ const char *name, const void *serialData, size_t serialLength) {
+ auto plugin =
+ new ModulatedDeformableConvPluginDynamic(name, serialData, serialLength);
+ plugin->setPluginNamespace(getPluginNamespace());
+ return plugin;
+}
+
+void ModulatedDeformableConvPluginDynamicCreator::setPluginNamespace(
+ const char *libNamespace) {
+ mNamespace = libNamespace;
+}
+
+const char *ModulatedDeformableConvPluginDynamicCreator::getPluginNamespace()
+ const {
+ return mNamespace.c_str();
+}
diff --git a/mmcv/ops/csrc/tensorrt/plugins/trt_modulated_deform_conv_kernel.cu b/mmcv/ops/csrc/tensorrt/plugins/trt_modulated_deform_conv_kernel.cu
new file mode 100644
index 000000000..258ae783f
--- /dev/null
+++ b/mmcv/ops/csrc/tensorrt/plugins/trt_modulated_deform_conv_kernel.cu
@@ -0,0 +1,133 @@
+#include
+#include
+
+#include "common_cuda_helper.hpp"
+#include "modulated_deform_conv_cuda_kernel.cuh"
+#include "trt_cuda_helper.cuh"
+#include "trt_plugin_helper.hpp"
+
+template
+void trt_modulated_deformable_im2col(
+ const T* data_im_, const T* data_offset_, const T* data_mask_,
+ const int batch_size, const int channels, const int height_im,
+ const int width_im, const int height_col, const int width_col,
+ const int kernel_h, const int kenerl_w, const int pad_h, const int pad_w,
+ const int stride_h, const int stride_w, const int dilation_h,
+ const int dilation_w, const int deformable_group, T* data_col_,
+ cudaStream_t stream) {
+ // num_axes should be smaller than block size
+ const int channel_per_deformable_group = channels / deformable_group;
+ const int num_kernels = channels * batch_size * height_col * width_col;
+
+ modulated_deformable_im2col_gpu_kernel
+ <<>>(
+ num_kernels, data_im_, data_offset_, data_mask_, height_im, width_im,
+ kernel_h, kenerl_w, pad_h, pad_w, stride_h, stride_w, dilation_h,
+ dilation_w, channel_per_deformable_group, batch_size, channels,
+ deformable_group, height_col, width_col, data_col_);
+
+ cudaCheckError();
+}
+
+template
+__global__ void output_add_bias_kernel(scalar_t* output, const scalar_t* bias,
+ size_t step_batch, size_t step_channel,
+ size_t n) {
+ CUDA_1D_KERNEL_LOOP(index, n) {
+ output[index] += bias[(index % step_batch) / step_channel];
+ }
+}
+
+template
+static void output_add_bias(scalar_t* output, const scalar_t* bias,
+ size_t batch, size_t channel, size_t height,
+ size_t width, cudaStream_t stream) {
+ size_t step_channel = height * width;
+ size_t step_batch = step_channel * channel;
+ size_t n = step_batch * batch;
+ output_add_bias_kernel<<>>(
+ output, bias, step_batch, step_channel, n);
+}
+
+template
+void ModulatedDeformConvForwardCUDAKernelLauncher(
+ const scalar_t* input, const scalar_t* weight, const scalar_t* bias,
+ const scalar_t* offset, const scalar_t* mask, scalar_t* output,
+ void* workspace, int batch, int channels, int height, int width,
+ int channels_out, int kernel_w, int kernel_h, int stride_w, int stride_h,
+ int pad_w, int pad_h, int dilation_w, int dilation_h, int group,
+ int deformable_group, int im2col_step, cublasHandle_t cublas_handle,
+ cudaStream_t stream) {
+ size_t sizeof_dtype = sizeof(scalar_t);
+ bool with_bias = (bias != nullptr);
+
+ im2col_step = std::min(int(batch), im2col_step);
+ assert(batch % im2col_step == 0);
+ const int channels_kernel = channels / group;
+
+ const int height_out =
+ (height + 2 * pad_h - (dilation_h * (kernel_h - 1) + 1)) / stride_h + 1;
+ const int width_out =
+ (width + 2 * pad_w - (dilation_w * (kernel_w - 1) + 1)) / stride_w + 1;
+
+ scalar_t* columns = (scalar_t*)workspace;
+
+ const size_t input_step = channels * height * width;
+ const size_t offset_step =
+ deformable_group * kernel_h * kernel_w * 2 * height * width;
+ const size_t mask_step =
+ deformable_group * kernel_h * kernel_w * height * width;
+ const size_t out_step = channels_out * height_out * width_out;
+ const size_t out_group_step = out_step / group;
+ const size_t col_g_step =
+ channels * kernel_w * kernel_h / group * height_out * width_out;
+ const size_t weight_g_step =
+ channels_out / group * channels / group * kernel_h * kernel_w;
+
+ const int m = channels_out / group;
+ const int n = height_out * width_out;
+ const int k = channels / group * kernel_h * kernel_w;
+ scalar_t alpha = 1.;
+ scalar_t beta = 0.;
+
+ for (int b = 0; b < batch; b++) {
+ const scalar_t* input_start = input + b * input_step;
+ const scalar_t* offset_start = offset + b * offset_step;
+ const scalar_t* mask_start = mask + b * mask_step;
+ trt_modulated_deformable_im2col(
+ input_start, offset_start, mask_start, 1, channels, height, width,
+ height_out, width_out, kernel_h, kernel_w, pad_h, pad_w, stride_h,
+ stride_w, dilation_h, dilation_w, deformable_group, columns, stream);
+
+ for (int g = 0; g < group; g++) {
+ const scalar_t* weight_start = weight + g * weight_g_step;
+ scalar_t* col_start = columns + g * col_g_step;
+ scalar_t* out_buffer_start = output + b * out_step + g * out_group_step;
+
+ // cudaMemsetAsync(out_buffer_start, 0, 1, stream);
+ cublasGemmWrap(cublas_handle, CUBLAS_OP_N, CUBLAS_OP_N, n, m, k,
+ &alpha, col_start, n, weight_start, k, &beta,
+ out_buffer_start, n);
+ cudaCheckError();
+ }
+ }
+
+ if (with_bias) {
+ output_add_bias(output, bias, batch, channels_out, height_out,
+ width_out, stream);
+ }
+}
+
+void ModulatedDeformConvForwardCUDAKernelLauncher_float(
+ const float* input, const float* weight, const float* bias,
+ const float* offset, const float* mask, float* output, void* workspace,
+ int batch, int channels, int height, int width, int channels_out,
+ int kernel_w, int kernel_h, int stride_w, int stride_h, int pad_w,
+ int pad_h, int dilation_w, int dilation_h, int group, int deformable_group,
+ int im2col_step, cublasHandle_t cublas_handle, cudaStream_t stream) {
+ ModulatedDeformConvForwardCUDAKernelLauncher(
+ input, weight, bias, offset, mask, output, workspace, batch, channels,
+ height, width, channels_out, kernel_w, kernel_h, stride_w, stride_h,
+ pad_w, pad_h, dilation_w, dilation_h, group, deformable_group,
+ im2col_step, cublas_handle, stream);
+}
diff --git a/mmcv/ops/csrc/tensorrt/plugins/trt_plugin.cpp b/mmcv/ops/csrc/tensorrt/plugins/trt_plugin.cpp
index 81f724f16..c7b946b5d 100644
--- a/mmcv/ops/csrc/tensorrt/plugins/trt_plugin.cpp
+++ b/mmcv/ops/csrc/tensorrt/plugins/trt_plugin.cpp
@@ -4,6 +4,7 @@
#include "trt_deform_conv.hpp"
#include "trt_grid_sampler.hpp"
#include "trt_instance_norm.hpp"
+#include "trt_modulated_deform_conv.hpp"
#include "trt_nms.hpp"
#include "trt_roi_align.hpp"
#include "trt_scatternd.hpp"
@@ -12,6 +13,7 @@ REGISTER_TENSORRT_PLUGIN(CumMaxPluginDynamicCreator);
REGISTER_TENSORRT_PLUGIN(CumMinPluginDynamicCreator);
REGISTER_TENSORRT_PLUGIN(GridSamplerDynamicCreator);
REGISTER_TENSORRT_PLUGIN(DeformableConvPluginDynamicCreator);
+REGISTER_TENSORRT_PLUGIN(ModulatedDeformableConvPluginDynamicCreator);
REGISTER_TENSORRT_PLUGIN(NonMaxSuppressionDynamicCreator);
REGISTER_TENSORRT_PLUGIN(RoIAlignPluginDynamicCreator);
REGISTER_TENSORRT_PLUGIN(ONNXScatterNDDynamicCreator);
diff --git a/mmcv/ops/csrc/tensorrt/trt_cuda_helper.cuh b/mmcv/ops/csrc/tensorrt/trt_cuda_helper.cuh
index a4635dcdd..db42dae9e 100644
--- a/mmcv/ops/csrc/tensorrt/trt_cuda_helper.cuh
+++ b/mmcv/ops/csrc/tensorrt/trt_cuda_helper.cuh
@@ -1,5 +1,6 @@
#ifndef TRT_CUDA_HELPER_HPP
#define TRT_CUDA_HELPER_HPP
+#include
#define DIVUP(m, n) ((m) / (n) + ((m) % (n) > 0))
@@ -24,7 +25,16 @@
* @param[in] stream cuda stream handle
*/
template
-void memcpyPermute(scalar_t *dst, const scalar_t *src, int *src_size,
- int *permute, int src_dim, cudaStream_t stream = 0);
+void memcpyPermute(scalar_t* dst, const scalar_t* src, int* src_size,
+ int* permute, int src_dim, cudaStream_t stream = 0);
+
+template
+cublasStatus_t cublasGemmWrap(cublasHandle_t handle, cublasOperation_t transa,
+ cublasOperation_t transb, int m, int n, int k,
+ const scalar_t* alpha, const scalar_t* A, int lda,
+ const scalar_t* B, int ldb, const scalar_t* beta,
+ scalar_t* C, int ldc) {
+ return CUBLAS_STATUS_INTERNAL_ERROR;
+}
#endif // TRT_CUDA_HELPER_HPP
diff --git a/mmcv/ops/csrc/tensorrt/trt_deform_conv.hpp b/mmcv/ops/csrc/tensorrt/trt_deform_conv.hpp
index b8762f786..fc48ac5dd 100644
--- a/mmcv/ops/csrc/tensorrt/trt_deform_conv.hpp
+++ b/mmcv/ops/csrc/tensorrt/trt_deform_conv.hpp
@@ -44,6 +44,9 @@ class DeformableConvPluginDynamic : public nvinfer1::IPluginV2DynamicExt {
const nvinfer1::PluginTensorDesc *outputDesc,
const void *const *inputs, void *const *outputs, void *workspace,
cudaStream_t stream) override;
+ void attachToContext(cudnnContext *cudnnContext, cublasContext *cublasContext,
+ nvinfer1::IGpuAllocator *gpuAllocator) override;
+ void detachFromContext() override;
// IPluginV2Ext Methods
nvinfer1::DataType getOutputDataType(int index,
@@ -74,7 +77,6 @@ class DeformableConvPluginDynamic : public nvinfer1::IPluginV2DynamicExt {
int mIm2colStep;
cublasHandle_t m_cublas_handle;
- cudaStream_t m_cuda_stream;
protected:
// To prevent compiler warnings.
diff --git a/mmcv/ops/csrc/tensorrt/trt_modulated_deform_conv.hpp b/mmcv/ops/csrc/tensorrt/trt_modulated_deform_conv.hpp
new file mode 100644
index 000000000..0907e7ea8
--- /dev/null
+++ b/mmcv/ops/csrc/tensorrt/trt_modulated_deform_conv.hpp
@@ -0,0 +1,120 @@
+#ifndef TRT_MODULATED_DEFORM_CONV_HPP
+#define TRT_MODULATED_DEFORM_CONV_HPP
+#include
+
+#include
+#include
+#include
+
+#include "trt_plugin_helper.hpp"
+
+class ModulatedDeformableConvPluginDynamic
+ : public nvinfer1::IPluginV2DynamicExt {
+ public:
+ ModulatedDeformableConvPluginDynamic(const std::string &name,
+ const nvinfer1::Dims stride,
+ const nvinfer1::Dims padding,
+ const nvinfer1::Dims dilation,
+ const int deformableGroup,
+ const int group);
+
+ ModulatedDeformableConvPluginDynamic(const std::string name, const void *data,
+ size_t length);
+
+ ModulatedDeformableConvPluginDynamic() = delete;
+
+ ~ModulatedDeformableConvPluginDynamic();
+
+ // IPluginV2DynamicExt Methods
+ nvinfer1::IPluginV2DynamicExt *clone() const override;
+ nvinfer1::DimsExprs getOutputDimensions(
+ int outputIndex, const nvinfer1::DimsExprs *inputs, int nbInputs,
+ nvinfer1::IExprBuilder &exprBuilder) override;
+ bool supportsFormatCombination(int pos,
+ const nvinfer1::PluginTensorDesc *inOut,
+ int nbInputs, int nbOutputs) override;
+ void configurePlugin(const nvinfer1::DynamicPluginTensorDesc *in,
+ int nbInputs,
+ const nvinfer1::DynamicPluginTensorDesc *out,
+ int nbOutputs) override;
+ size_t getWorkspaceSize(const nvinfer1::PluginTensorDesc *inputs,
+ int nbInputs,
+ const nvinfer1::PluginTensorDesc *outputs,
+ int nbOutputs) const override;
+ int enqueue(const nvinfer1::PluginTensorDesc *inputDesc,
+ const nvinfer1::PluginTensorDesc *outputDesc,
+ const void *const *inputs, void *const *outputs, void *workspace,
+ cudaStream_t stream) override;
+ void attachToContext(cudnnContext *cudnnContext, cublasContext *cublasContext,
+ nvinfer1::IGpuAllocator *gpuAllocator) override;
+ void detachFromContext() override;
+
+ // IPluginV2Ext Methods
+ nvinfer1::DataType getOutputDataType(int index,
+ const nvinfer1::DataType *inputTypes,
+ int nbInputs) const override;
+
+ // IPluginV2 Methods
+ const char *getPluginType() const override;
+ const char *getPluginVersion() const override;
+ int getNbOutputs() const override;
+ int initialize() override;
+ void terminate() override;
+ size_t getSerializationSize() const override;
+ void serialize(void *buffer) const override;
+ void destroy() override;
+ void setPluginNamespace(const char *pluginNamespace) override;
+ const char *getPluginNamespace() const override;
+
+ private:
+ const std::string mLayerName;
+ std::string mNamespace;
+
+ nvinfer1::Dims mStride;
+ nvinfer1::Dims mPadding;
+ nvinfer1::Dims mDilation;
+ int mDeformableGroup;
+ int mGroup;
+ bool mWithBias;
+
+ cublasHandle_t m_cublas_handle;
+
+ protected:
+ // To prevent compiler warnings.
+ using nvinfer1::IPluginV2DynamicExt::canBroadcastInputAcrossBatch;
+ using nvinfer1::IPluginV2DynamicExt::configurePlugin;
+ using nvinfer1::IPluginV2DynamicExt::enqueue;
+ using nvinfer1::IPluginV2DynamicExt::getOutputDimensions;
+ using nvinfer1::IPluginV2DynamicExt::getWorkspaceSize;
+ using nvinfer1::IPluginV2DynamicExt::isOutputBroadcastAcrossBatch;
+ using nvinfer1::IPluginV2DynamicExt::supportsFormat;
+};
+
+class ModulatedDeformableConvPluginDynamicCreator
+ : public nvinfer1::IPluginCreator {
+ public:
+ ModulatedDeformableConvPluginDynamicCreator();
+
+ const char *getPluginName() const override;
+
+ const char *getPluginVersion() const override;
+
+ const nvinfer1::PluginFieldCollection *getFieldNames() override;
+
+ nvinfer1::IPluginV2 *createPlugin(
+ const char *name, const nvinfer1::PluginFieldCollection *fc) override;
+
+ nvinfer1::IPluginV2 *deserializePlugin(const char *name,
+ const void *serialData,
+ size_t serialLength) override;
+
+ void setPluginNamespace(const char *pluginNamespace) override;
+
+ const char *getPluginNamespace() const override;
+
+ private:
+ static nvinfer1::PluginFieldCollection mFC;
+ static std::vector mPluginAttributes;
+ std::string mNamespace;
+};
+#endif // TRT_MODULATED_DEFORM_CONV_HPP
diff --git a/mmcv/ops/modulated_deform_conv.py b/mmcv/ops/modulated_deform_conv.py
index b3dfd0b00..d26f61a0a 100644
--- a/mmcv/ops/modulated_deform_conv.py
+++ b/mmcv/ops/modulated_deform_conv.py
@@ -20,13 +20,12 @@ class ModulatedDeformConv2dFunction(Function):
@staticmethod
def symbolic(g, input, offset, mask, weight, bias, stride, padding,
dilation, groups, deform_groups):
+ input_tensors = [input, offset, mask, weight]
+ if bias is not None:
+ input_tensors.append(bias)
return g.op(
- 'MMCVModulatedDeformConv2d',
- input,
- offset,
- mask,
- weight,
- bias,
+ 'mmcv::MMCVModulatedDeformConv2d',
+ *input_tensors,
stride_i=stride,
padding_i=padding,
dilation_i=dilation,
diff --git a/tests/test_ops/test_tensorrt.py b/tests/test_ops/test_tensorrt.py
index 362a40343..d65308ba8 100644
--- a/tests/test_ops/test_tensorrt.py
+++ b/tests/test_ops/test_tensorrt.py
@@ -406,6 +406,77 @@ def test_deform_conv():
assert torch.allclose(pytorch_results, trt_results)
+@pytest.mark.parametrize('with_bias', [True, False])
+def test_modulated_deform_conv(with_bias):
+ try:
+ from mmcv.ops import ModulatedDeformConv2dPack
+ except (ImportError, ModuleNotFoundError):
+ pytest.skip('test requires compilation')
+
+ input = [[[[1., 2., 3.], [0., 1., 2.], [3., 5., 2.]]]]
+
+ x = torch.Tensor(input).cuda()
+ model = ModulatedDeformConv2dPack(
+ 1,
+ 1,
+ kernel_size=(2, 2),
+ stride=1,
+ padding=1,
+ deform_groups=1,
+ bias=with_bias)
+ model.weight.data.fill_(1.)
+ model.type(torch.float32)
+ model = model.cuda().eval()
+
+ input_names = ['input']
+ output_names = ['output']
+
+ with torch.no_grad():
+ torch.onnx.export(
+ model, (x.clone(), ),
+ onnx_file,
+ export_params=True,
+ keep_initializers_as_inputs=True,
+ input_names=input_names,
+ output_names=output_names,
+ opset_version=11)
+
+ onnx_model = onnx.load(onnx_file)
+
+ # create trt engine and wraper
+ opt_shape_dict = {
+ 'input': [list(x.shape), list(x.shape),
+ list(x.shape)],
+ }
+ # trt config
+ fp16_mode = False
+ max_workspace_size = 1 << 30
+
+ trt_engine = onnx2trt(
+ onnx_model,
+ opt_shape_dict,
+ fp16_mode=fp16_mode,
+ max_workspace_size=max_workspace_size)
+
+ save_trt_engine(trt_engine, trt_file)
+ trt_model = TRTWrapper(trt_file, input_names, output_names)
+
+ with torch.no_grad():
+ trt_outputs = trt_model({'input': x.clone()})
+ trt_results = trt_outputs['output']
+
+ # compute pytorch_output
+ with torch.no_grad():
+ pytorch_results = model(x.clone())
+
+ # allclose
+ if os.path.exists(onnx_file):
+ os.remove(onnx_file)
+ if os.path.exists(trt_file):
+ os.remove(trt_file)
+ torch.testing.assert_allclose(pytorch_results, trt_results)
+
+
@pytest.mark.parametrize('mode', ['bilinear', 'nearest'])
@pytest.mark.parametrize('padding_mode', ['zeros', 'border', 'reflection'])
@pytest.mark.parametrize('align_corners', [True, False])