mirror of https://github.com/open-mmlab/mmcv.git
parent
b7136e3953
commit
02920db2cc
|
@ -1,19 +1,90 @@
|
|||
// Copyright (c) 2018, SenseTime.
|
||||
#include "parrots_cpp_helper.hpp"
|
||||
|
||||
void ROIAlignForwardCUDAKernelLauncher(const DArrayLite input,
|
||||
const DArrayLite rois, DArrayLite output,
|
||||
DArrayLite argmax_y, DArrayLite argmax_x,
|
||||
int aligned_height, int aligned_width,
|
||||
float spatial_scale, int sampling_ratio,
|
||||
int pool_mode, bool aligned,
|
||||
cudaStream_t stream);
|
||||
void ROIAlignForwardCPULauncher(DArrayLite input, DArrayLite rois,
|
||||
DArrayLite output, DArrayLite argmax_y,
|
||||
DArrayLite argmax_x, int aligned_height,
|
||||
int aligned_width, float spatial_scale,
|
||||
int sampling_ratio, int pool_mode,
|
||||
bool aligned);
|
||||
|
||||
void ROIAlignBackwardCPULauncher(DArrayLite grad_output, DArrayLite rois,
|
||||
DArrayLite argmax_y, DArrayLite argmax_x,
|
||||
DArrayLite grad_input, int aligned_height,
|
||||
int aligned_width, float spatial_scale,
|
||||
int sampling_ratio, int pool_mode,
|
||||
bool aligned);
|
||||
|
||||
void ROIAlignForwardCUDAKernelLauncher(DArrayLite input, DArrayLite rois,
|
||||
DArrayLite output, DArrayLite argmax_y,
|
||||
DArrayLite argmax_x, int aligned_height,
|
||||
int aligned_width, float spatial_scale,
|
||||
int sampling_ratio, int pool_mode,
|
||||
bool aligned, cudaStream_t stream);
|
||||
|
||||
void ROIAlignBackwardCUDAKernelLauncher(
|
||||
const DArrayLite grad_output, const DArrayLite rois,
|
||||
const DArrayLite argmax_y, const DArrayLite argmax_x, DArrayLite grad_input,
|
||||
int aligned_height, int aligned_width, float spatial_scale,
|
||||
int sampling_ratio, int pool_mode, bool aligned, cudaStream_t stream);
|
||||
DArrayLite grad_output, DArrayLite rois, DArrayLite argmax_y,
|
||||
DArrayLite argmax_x, DArrayLite grad_input, int aligned_height,
|
||||
int aligned_width, float spatial_scale, int sampling_ratio, int pool_mode,
|
||||
bool aligned, cudaStream_t stream);
|
||||
|
||||
void roi_align_forward_cpu(HostContext& ctx, const SSElement& attr,
|
||||
const OperatorBase::in_list_t& ins,
|
||||
OperatorBase::out_list_t& outs) {
|
||||
int aligned_height;
|
||||
int aligned_width;
|
||||
float spatial_scale;
|
||||
int sampling_ratio;
|
||||
int pool_mode;
|
||||
bool aligned;
|
||||
SSAttrs(attr)
|
||||
.get<int>("aligned_height", aligned_height)
|
||||
.get<int>("aligned_width", aligned_width)
|
||||
.get<float>("spatial_scale", spatial_scale)
|
||||
.get<int>("sampling_ratio", sampling_ratio)
|
||||
.get<int>("pool_mode", pool_mode)
|
||||
.get<bool>("aligned", aligned)
|
||||
.done();
|
||||
|
||||
auto& input = ins[0];
|
||||
auto& rois = ins[1];
|
||||
auto& output = outs[0];
|
||||
auto& argmax_y = outs[1];
|
||||
auto& argmax_x = outs[2];
|
||||
|
||||
ROIAlignForwardCPULauncher(input, rois, output, argmax_y, argmax_x,
|
||||
aligned_height, aligned_width, spatial_scale,
|
||||
sampling_ratio, pool_mode, aligned);
|
||||
}
|
||||
|
||||
void roi_align_backward_cpu(HostContext& ctx, const SSElement& attr,
|
||||
const OperatorBase::in_list_t& ins,
|
||||
OperatorBase::out_list_t& outs) {
|
||||
int aligned_height;
|
||||
int aligned_width;
|
||||
float spatial_scale;
|
||||
int sampling_ratio;
|
||||
int pool_mode;
|
||||
bool aligned;
|
||||
SSAttrs(attr)
|
||||
.get<int>("aligned_height", aligned_height)
|
||||
.get<int>("aligned_width", aligned_width)
|
||||
.get<float>("spatial_scale", spatial_scale)
|
||||
.get<int>("sampling_ratio", sampling_ratio)
|
||||
.get<int>("pool_mode", pool_mode)
|
||||
.get<bool>("aligned", aligned)
|
||||
.done();
|
||||
|
||||
auto& grad_output = ins[0];
|
||||
auto& rois = ins[1];
|
||||
auto& argmax_y = ins[2];
|
||||
auto& argmax_x = ins[3];
|
||||
auto& grad_input = outs[0];
|
||||
|
||||
ROIAlignBackwardCPULauncher(grad_output, rois, argmax_y, argmax_x, grad_input,
|
||||
aligned_height, aligned_width, spatial_scale,
|
||||
sampling_ratio, pool_mode, aligned);
|
||||
}
|
||||
|
||||
void roi_align_forward_cuda(CudaContext& ctx, const SSElement& attr,
|
||||
const OperatorBase::in_list_t& ins,
|
||||
|
@ -33,8 +104,8 @@ void roi_align_forward_cuda(CudaContext& ctx, const SSElement& attr,
|
|||
.get<bool>("aligned", aligned)
|
||||
.done();
|
||||
|
||||
const auto& input = ins[0];
|
||||
const auto& rois = ins[1];
|
||||
auto& input = ins[0];
|
||||
auto& rois = ins[1];
|
||||
auto& output = outs[0];
|
||||
auto& argmax_y = outs[1];
|
||||
auto& argmax_x = outs[2];
|
||||
|
@ -63,10 +134,10 @@ void roi_align_backward_cuda(CudaContext& ctx, const SSElement& attr,
|
|||
.get<bool>("aligned", aligned)
|
||||
.done();
|
||||
|
||||
const auto& grad_output = ins[0];
|
||||
const auto& rois = ins[1];
|
||||
const auto& argmax_y = ins[2];
|
||||
const auto& argmax_x = ins[3];
|
||||
auto& grad_output = ins[0];
|
||||
auto& rois = ins[1];
|
||||
auto& argmax_y = ins[2];
|
||||
auto& argmax_x = ins[3];
|
||||
auto& grad_input = outs[0];
|
||||
|
||||
cudaStream_t stream = getStreamNative<CudaDevice>(ctx.getStream());
|
||||
|
@ -84,7 +155,10 @@ PARROTS_EXTENSION_REGISTER(roi_align_forward)
|
|||
.attr("aligned")
|
||||
.input(2)
|
||||
.output(3)
|
||||
.apply(roi_align_forward_cpu)
|
||||
#ifdef PARROTS_USE_CUDA
|
||||
.apply(roi_align_forward_cuda)
|
||||
#endif
|
||||
.done();
|
||||
|
||||
PARROTS_EXTENSION_REGISTER(roi_align_backward)
|
||||
|
@ -96,5 +170,8 @@ PARROTS_EXTENSION_REGISTER(roi_align_backward)
|
|||
.attr("aligned")
|
||||
.input(4)
|
||||
.output(1)
|
||||
.apply(roi_align_backward_cpu)
|
||||
#ifdef PARROTS_USE_CUDA
|
||||
.apply(roi_align_backward_cuda)
|
||||
#endif
|
||||
.done();
|
||||
|
|
|
@ -0,0 +1,430 @@
|
|||
// Modified from
|
||||
// https://github.com/facebookresearch/detectron2/tree/master/detectron2/layers/csrc/ROIAlign
|
||||
// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
||||
#include <iostream>
|
||||
|
||||
#include "parrots_cpp_helper.hpp"
|
||||
|
||||
// implementation taken from Caffe2
|
||||
template <typename T>
|
||||
struct PreCalc {
|
||||
int pos1;
|
||||
int pos2;
|
||||
int pos3;
|
||||
int pos4;
|
||||
T w1;
|
||||
T w2;
|
||||
T w3;
|
||||
T w4;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
void pre_calc_for_bilinear_interpolate(
|
||||
const int height, const int width, const int pooled_height,
|
||||
const int pooled_width, const int iy_upper, const int ix_upper,
|
||||
T roi_start_h, T roi_start_w, T bin_size_h, T bin_size_w,
|
||||
int roi_bin_grid_h, int roi_bin_grid_w, std::vector<PreCalc<T>>& pre_calc) {
|
||||
int pre_calc_index = 0;
|
||||
for (int ph = 0; ph < pooled_height; ph++) {
|
||||
for (int pw = 0; pw < pooled_width; pw++) {
|
||||
for (int iy = 0; iy < iy_upper; iy++) {
|
||||
const T yy = roi_start_h + ph * bin_size_h +
|
||||
static_cast<T>(iy + .5f) * bin_size_h /
|
||||
static_cast<T>(roi_bin_grid_h); // e.g., 0.5, 1.5
|
||||
for (int ix = 0; ix < ix_upper; ix++) {
|
||||
const T xx = roi_start_w + pw * bin_size_w +
|
||||
static_cast<T>(ix + .5f) * bin_size_w /
|
||||
static_cast<T>(roi_bin_grid_w);
|
||||
|
||||
T x = xx;
|
||||
T y = yy;
|
||||
// deal with: inverse elements are out of feature map boundary
|
||||
if (y < -1.0 || y > height || x < -1.0 || x > width) {
|
||||
// empty
|
||||
PreCalc<T> pc;
|
||||
pc.pos1 = 0;
|
||||
pc.pos2 = 0;
|
||||
pc.pos3 = 0;
|
||||
pc.pos4 = 0;
|
||||
pc.w1 = 0;
|
||||
pc.w2 = 0;
|
||||
pc.w3 = 0;
|
||||
pc.w4 = 0;
|
||||
pre_calc[pre_calc_index] = pc;
|
||||
pre_calc_index += 1;
|
||||
continue;
|
||||
}
|
||||
|
||||
if (y <= 0) {
|
||||
y = 0;
|
||||
}
|
||||
if (x <= 0) {
|
||||
x = 0;
|
||||
}
|
||||
|
||||
int y_low = (int)y;
|
||||
int x_low = (int)x;
|
||||
int y_high;
|
||||
int x_high;
|
||||
|
||||
if (y_low >= height - 1) {
|
||||
y_high = y_low = height - 1;
|
||||
y = (T)y_low;
|
||||
} else {
|
||||
y_high = y_low + 1;
|
||||
}
|
||||
|
||||
if (x_low >= width - 1) {
|
||||
x_high = x_low = width - 1;
|
||||
x = (T)x_low;
|
||||
} else {
|
||||
x_high = x_low + 1;
|
||||
}
|
||||
|
||||
T ly = y - y_low;
|
||||
T lx = x - x_low;
|
||||
T hy = 1. - ly, hx = 1. - lx;
|
||||
T w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;
|
||||
|
||||
// save weights and indices
|
||||
PreCalc<T> pc;
|
||||
pc.pos1 = y_low * width + x_low;
|
||||
pc.pos2 = y_low * width + x_high;
|
||||
pc.pos3 = y_high * width + x_low;
|
||||
pc.pos4 = y_high * width + x_high;
|
||||
pc.w1 = w1;
|
||||
pc.w2 = w2;
|
||||
pc.w3 = w3;
|
||||
pc.w4 = w4;
|
||||
pre_calc[pre_calc_index] = pc;
|
||||
|
||||
pre_calc_index += 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void ROIAlignForward(const int nthreads, const T* input, const T* rois,
|
||||
T* output, T* argmax_y, T* argmax_x,
|
||||
const int pooled_height, const int pooled_width,
|
||||
const T spatial_scale, const int sampling_ratio,
|
||||
const int pool_mode, // 0 - max pool, 1 - avg pool
|
||||
const bool aligned, const int channels, const int height,
|
||||
const int width) {
|
||||
int n_rois = nthreads / channels / pooled_width / pooled_height;
|
||||
// (n, c, ph, pw) is an element in the pooled output
|
||||
// can be parallelized using omp
|
||||
// #pragma omp parallel for num_threads(32)
|
||||
for (int n = 0; n < n_rois; n++) {
|
||||
int index_n = n * channels * pooled_width * pooled_height;
|
||||
|
||||
const T* offset_rois = rois + n * 5;
|
||||
int roi_batch_ind = offset_rois[0];
|
||||
|
||||
// Do not use rounding; this implementation detail is critical
|
||||
T offset = aligned ? (T)0.5 : (T)0.0;
|
||||
T roi_start_w = offset_rois[1] * spatial_scale - offset;
|
||||
T roi_start_h = offset_rois[2] * spatial_scale - offset;
|
||||
T roi_end_w = offset_rois[3] * spatial_scale - offset;
|
||||
T roi_end_h = offset_rois[4] * spatial_scale - offset;
|
||||
|
||||
T roi_width = roi_end_w - roi_start_w;
|
||||
T roi_height = roi_end_h - roi_start_h;
|
||||
if (aligned) {
|
||||
PARROTS_CHECKARGS(roi_width >= 0 && roi_height >= 0)
|
||||
<< "ROIs in ROIAlign cannot have non-negative size!";
|
||||
} else { // for backward-compatibility only
|
||||
roi_width = std::max(roi_width, (T)1.);
|
||||
roi_height = std::max(roi_height, (T)1.);
|
||||
}
|
||||
T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
|
||||
T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);
|
||||
|
||||
// We use roi_bin_grid to sample the grid and mimic integral
|
||||
int roi_bin_grid_h = (sampling_ratio > 0)
|
||||
? sampling_ratio
|
||||
: ceil(roi_height / pooled_height); // e.g., = 2
|
||||
int roi_bin_grid_w =
|
||||
(sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);
|
||||
|
||||
// When the grid is empty, output zeros == 0/1, instead of NaN.
|
||||
const T count = std::max(roi_bin_grid_h * roi_bin_grid_w, 1); // e.g. = 4
|
||||
|
||||
// we want to precalculate indices and weights shared by all channels,
|
||||
// this is the key point of optimization
|
||||
std::vector<PreCalc<T>> pre_calc(roi_bin_grid_h * roi_bin_grid_w *
|
||||
pooled_width * pooled_height);
|
||||
pre_calc_for_bilinear_interpolate(
|
||||
height, width, pooled_height, pooled_width, roi_bin_grid_h,
|
||||
roi_bin_grid_w, roi_start_h, roi_start_w, bin_size_h, bin_size_w,
|
||||
roi_bin_grid_h, roi_bin_grid_w, pre_calc);
|
||||
|
||||
for (int c = 0; c < channels; c++) {
|
||||
int index_n_c = index_n + c * pooled_width * pooled_height;
|
||||
const T* offset_input =
|
||||
input + (roi_batch_ind * channels + c) * height * width;
|
||||
int pre_calc_index = 0;
|
||||
|
||||
for (int ph = 0; ph < pooled_height; ph++) {
|
||||
for (int pw = 0; pw < pooled_width; pw++) {
|
||||
int index = index_n_c + ph * pooled_width + pw;
|
||||
|
||||
T output_val = 0.;
|
||||
T maxval = -10000;
|
||||
T maxidx_y = -1.f, maxidx_x = -1.f;
|
||||
for (int iy = 0; iy < roi_bin_grid_h; iy++) {
|
||||
const T y = roi_start_h + ph * bin_size_h +
|
||||
static_cast<T>(iy + .5f) * bin_size_h /
|
||||
static_cast<T>(roi_bin_grid_h);
|
||||
for (int ix = 0; ix < roi_bin_grid_w; ix++) {
|
||||
const T x = roi_start_w + pw * bin_size_w +
|
||||
static_cast<T>(ix + .5f) * bin_size_w /
|
||||
static_cast<T>(roi_bin_grid_w);
|
||||
PreCalc<T> pc = pre_calc[pre_calc_index];
|
||||
T val = pc.w1 * offset_input[pc.pos1] +
|
||||
pc.w2 * offset_input[pc.pos2] +
|
||||
pc.w3 * offset_input[pc.pos3] +
|
||||
pc.w4 * offset_input[pc.pos4];
|
||||
if (val > maxval) {
|
||||
maxval = val;
|
||||
maxidx_y = y;
|
||||
maxidx_x = x;
|
||||
}
|
||||
output_val += val;
|
||||
pre_calc_index += 1;
|
||||
}
|
||||
}
|
||||
if (pool_mode == 0) {
|
||||
// We do max pooling inside a bin
|
||||
output[index] = maxval;
|
||||
argmax_y[index] = maxidx_y;
|
||||
argmax_x[index] = maxidx_x;
|
||||
} else if (pool_mode == 1) {
|
||||
// We do average (integral) pooling inside a bin
|
||||
output[index] = output_val / count;
|
||||
} // if
|
||||
} // for pw
|
||||
} // for ph
|
||||
} // for c
|
||||
} // for n
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void bilinear_interpolate_gradient(const int height, const int width, T y, T x,
|
||||
T& w1, T& w2, T& w3, T& w4, int& x_low,
|
||||
int& x_high, int& y_low, int& y_high,
|
||||
const int index /* index for debug only*/) {
|
||||
// deal with cases that inverse elements are out of feature map boundary
|
||||
if (y < -1.0 || y > height || x < -1.0 || x > width) {
|
||||
// empty
|
||||
w1 = w2 = w3 = w4 = 0.;
|
||||
x_low = x_high = y_low = y_high = -1;
|
||||
return;
|
||||
}
|
||||
|
||||
if (y <= 0) y = 0;
|
||||
if (x <= 0) x = 0;
|
||||
|
||||
y_low = (int)y;
|
||||
x_low = (int)x;
|
||||
|
||||
if (y_low >= height - 1) {
|
||||
y_high = y_low = height - 1;
|
||||
y = (T)y_low;
|
||||
} else {
|
||||
y_high = y_low + 1;
|
||||
}
|
||||
|
||||
if (x_low >= width - 1) {
|
||||
x_high = x_low = width - 1;
|
||||
x = (T)x_low;
|
||||
} else {
|
||||
x_high = x_low + 1;
|
||||
}
|
||||
|
||||
T ly = y - y_low;
|
||||
T lx = x - x_low;
|
||||
T hy = 1. - ly, hx = 1. - lx;
|
||||
|
||||
// reference in forward
|
||||
// T v1 = input[y_low * width + x_low];
|
||||
// T v2 = input[y_low * width + x_high];
|
||||
// T v3 = input[y_high * width + x_low];
|
||||
// T v4 = input[y_high * width + x_high];
|
||||
// T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
|
||||
|
||||
w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
template <class T>
|
||||
inline void add(T* address, const T& val) {
|
||||
*address += val;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void ROIAlignBackward(const int nthreads, const T* grad_output, const T* rois,
|
||||
const T* argmax_y, const T* argmax_x, T* grad_input,
|
||||
const int pooled_height, const int pooled_width,
|
||||
const T spatial_scale, const int sampling_ratio,
|
||||
const int pool_mode, // 0 - max pool, 1 - avg pool
|
||||
const bool aligned, const int channels, const int height,
|
||||
const int width, const int n_stride, const int c_stride,
|
||||
const int h_stride, const int w_stride) {
|
||||
for (int index = 0; index < nthreads; index++) {
|
||||
// (n, c, ph, pw) is an element in the pooled output
|
||||
int pw = index % pooled_width;
|
||||
int ph = (index / pooled_width) % pooled_height;
|
||||
int c = (index / pooled_width / pooled_height) % channels;
|
||||
int n = index / pooled_width / pooled_height / channels;
|
||||
|
||||
const T* offset_rois = rois + n * 5;
|
||||
int roi_batch_ind = offset_rois[0];
|
||||
|
||||
// Do not use rounding; this implementation detail is critical
|
||||
T offset = aligned ? (T)0.5 : (T)0.0;
|
||||
T roi_start_w = offset_rois[1] * spatial_scale - offset;
|
||||
T roi_start_h = offset_rois[2] * spatial_scale - offset;
|
||||
T roi_end_w = offset_rois[3] * spatial_scale - offset;
|
||||
T roi_end_h = offset_rois[4] * spatial_scale - offset;
|
||||
|
||||
T roi_width = roi_end_w - roi_start_w;
|
||||
T roi_height = roi_end_h - roi_start_h;
|
||||
if (aligned) {
|
||||
PARROTS_CHECKARGS(roi_width >= 0 && roi_height >= 0)
|
||||
<< "ROIs in ROIAlign do not have non-negative size!";
|
||||
} else { // for backward-compatibility only
|
||||
roi_width = std::max(roi_width, (T)1.);
|
||||
roi_height = std::max(roi_height, (T)1.);
|
||||
}
|
||||
T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
|
||||
T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);
|
||||
|
||||
T* offset_grad_input =
|
||||
grad_input + ((roi_batch_ind * channels + c) * height * width);
|
||||
|
||||
int output_offset = n * n_stride + c * c_stride;
|
||||
const T* offset_grad_output = grad_output + output_offset;
|
||||
const T grad_output_this_bin =
|
||||
offset_grad_output[ph * h_stride + pw * w_stride];
|
||||
|
||||
if (pool_mode == 0) {
|
||||
// We do max pooling inside a bin
|
||||
T y = argmax_y[index], x = argmax_x[index];
|
||||
if (y != -1.f) {
|
||||
T w1, w2, w3, w4;
|
||||
int x_low, x_high, y_low, y_high;
|
||||
bilinear_interpolate_gradient(height, width, y, x, w1, w2, w3, w4,
|
||||
x_low, x_high, y_low, y_high, index);
|
||||
|
||||
T g1 = grad_output_this_bin * w1;
|
||||
T g2 = grad_output_this_bin * w2;
|
||||
T g3 = grad_output_this_bin * w3;
|
||||
T g4 = grad_output_this_bin * w4;
|
||||
|
||||
if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) {
|
||||
// atomic add is not needed for now since it is single threaded
|
||||
add(offset_grad_input + y_low * width + x_low, static_cast<T>(g1));
|
||||
add(offset_grad_input + y_low * width + x_high, static_cast<T>(g2));
|
||||
add(offset_grad_input + y_high * width + x_low, static_cast<T>(g3));
|
||||
add(offset_grad_input + y_high * width + x_high, static_cast<T>(g4));
|
||||
} // if
|
||||
} // mode
|
||||
} else if (pool_mode == 1) {
|
||||
// We do average (integral) pooling inside a bin
|
||||
// We use roi_bin_grid to sample the grid and mimic integral
|
||||
int roi_bin_grid_h = (sampling_ratio > 0)
|
||||
? sampling_ratio
|
||||
: ceil(roi_height / pooled_height); // e.g., = 2
|
||||
int roi_bin_grid_w = (sampling_ratio > 0)
|
||||
? sampling_ratio
|
||||
: ceil(roi_width / pooled_width);
|
||||
|
||||
const T count = roi_bin_grid_h * roi_bin_grid_w; // e.g. = 4
|
||||
for (int iy = 0; iy < roi_bin_grid_h; iy++) {
|
||||
const T y = roi_start_h + ph * bin_size_h +
|
||||
static_cast<T>(iy + .5f) * bin_size_h /
|
||||
static_cast<T>(roi_bin_grid_h); // e.g., 0.5, 1.5
|
||||
for (int ix = 0; ix < roi_bin_grid_w; ix++) {
|
||||
const T x = roi_start_w + pw * bin_size_w +
|
||||
static_cast<T>(ix + .5f) * bin_size_w /
|
||||
static_cast<T>(roi_bin_grid_w);
|
||||
|
||||
T w1, w2, w3, w4;
|
||||
int x_low, x_high, y_low, y_high;
|
||||
|
||||
bilinear_interpolate_gradient(height, width, y, x, w1, w2, w3, w4,
|
||||
x_low, x_high, y_low, y_high, index);
|
||||
|
||||
T g1 = grad_output_this_bin * w1 / count;
|
||||
T g2 = grad_output_this_bin * w2 / count;
|
||||
T g3 = grad_output_this_bin * w3 / count;
|
||||
T g4 = grad_output_this_bin * w4 / count;
|
||||
|
||||
if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) {
|
||||
// atomic add is not needed for now since it is single threaded
|
||||
add(offset_grad_input + y_low * width + x_low, static_cast<T>(g1));
|
||||
add(offset_grad_input + y_low * width + x_high, static_cast<T>(g2));
|
||||
add(offset_grad_input + y_high * width + x_low, static_cast<T>(g3));
|
||||
add(offset_grad_input + y_high * width + x_high,
|
||||
static_cast<T>(g4));
|
||||
} // if
|
||||
} // ix
|
||||
} // iy
|
||||
} // mode
|
||||
} // for
|
||||
} // ROIAlignBackward
|
||||
|
||||
void ROIAlignForwardCPULauncher(DArrayLite input, DArrayLite rois,
|
||||
DArrayLite output, DArrayLite argmax_y,
|
||||
DArrayLite argmax_x, int aligned_height,
|
||||
int aligned_width, float spatial_scale,
|
||||
int sampling_ratio, int pool_mode,
|
||||
bool aligned) {
|
||||
int output_size = output.size();
|
||||
int channels = input.dim(1);
|
||||
int height = input.dim(2);
|
||||
int width = input.dim(3);
|
||||
|
||||
PARROTS_DISPATCH_FLOATING_TYPES_AND_HALF(
|
||||
input.elemType().prim(), ([&] {
|
||||
ROIAlignForward<scalar_t>(
|
||||
output_size, input.ptr<scalar_t>(), rois.ptr<scalar_t>(),
|
||||
output.ptr<scalar_t>(), argmax_y.ptr<scalar_t>(),
|
||||
argmax_x.ptr<scalar_t>(), aligned_height, aligned_width,
|
||||
static_cast<scalar_t>(spatial_scale), sampling_ratio, pool_mode,
|
||||
aligned, channels, height, width);
|
||||
}));
|
||||
}
|
||||
|
||||
void ROIAlignBackwardCPULauncher(DArrayLite grad_output, DArrayLite rois,
|
||||
DArrayLite argmax_y, DArrayLite argmax_x,
|
||||
DArrayLite grad_input, int aligned_height,
|
||||
int aligned_width, float spatial_scale,
|
||||
int sampling_ratio, int pool_mode,
|
||||
bool aligned) {
|
||||
int output_size = grad_output.size();
|
||||
int channels = grad_input.dim(1);
|
||||
int height = grad_input.dim(2);
|
||||
int width = grad_input.dim(3);
|
||||
|
||||
// get stride values to ensure indexing into gradients is correct.
|
||||
int n_stride = grad_output.stride(0);
|
||||
int c_stride = grad_output.stride(1);
|
||||
int h_stride = grad_output.stride(2);
|
||||
int w_stride = grad_output.stride(3);
|
||||
|
||||
PARROTS_DISPATCH_FLOATING_TYPES_AND_HALF(
|
||||
grad_output.elemType().prim(), ([&] {
|
||||
ROIAlignBackward<scalar_t>(
|
||||
output_size, grad_output.ptr<scalar_t>(), rois.ptr<scalar_t>(),
|
||||
argmax_y.ptr<scalar_t>(), argmax_x.ptr<scalar_t>(),
|
||||
grad_input.ptr<scalar_t>(), aligned_height, aligned_width,
|
||||
static_cast<scalar_t>(spatial_scale), sampling_ratio, pool_mode,
|
||||
aligned, channels, height, width, n_stride, c_stride, h_stride,
|
||||
w_stride);
|
||||
}));
|
||||
}
|
|
@ -1,13 +1,12 @@
|
|||
#include "parrots_cuda_helper.hpp"
|
||||
#include "roi_align_cuda_kernel.cuh"
|
||||
|
||||
void ROIAlignForwardCUDAKernelLauncher(const DArrayLite input,
|
||||
const DArrayLite rois, DArrayLite output,
|
||||
DArrayLite argmax_y, DArrayLite argmax_x,
|
||||
int aligned_height, int aligned_width,
|
||||
float spatial_scale, int sampling_ratio,
|
||||
int pool_mode, bool aligned,
|
||||
cudaStream_t stream) {
|
||||
void ROIAlignForwardCUDAKernelLauncher(DArrayLite input, DArrayLite rois,
|
||||
DArrayLite output, DArrayLite argmax_y,
|
||||
DArrayLite argmax_x, int aligned_height,
|
||||
int aligned_width, float spatial_scale,
|
||||
int sampling_ratio, int pool_mode,
|
||||
bool aligned, cudaStream_t stream) {
|
||||
int output_size = output.size();
|
||||
int channels = input.dim(1);
|
||||
int height = input.dim(2);
|
||||
|
@ -20,18 +19,18 @@ void ROIAlignForwardCUDAKernelLauncher(const DArrayLite input,
|
|||
output_size, input.ptr<scalar_t>(), rois.ptr<scalar_t>(),
|
||||
output.ptr<scalar_t>(), argmax_y.ptr<scalar_t>(),
|
||||
argmax_x.ptr<scalar_t>(), aligned_height, aligned_width,
|
||||
spatial_scale, sampling_ratio, pool_mode, aligned, channels,
|
||||
height, width);
|
||||
static_cast<scalar_t>(spatial_scale), sampling_ratio, pool_mode,
|
||||
aligned, channels, height, width);
|
||||
}));
|
||||
|
||||
PARROTS_CUDA_CHECK(cudaGetLastError());
|
||||
}
|
||||
|
||||
void ROIAlignBackwardCUDAKernelLauncher(
|
||||
const DArrayLite grad_output, const DArrayLite rois,
|
||||
const DArrayLite argmax_y, const DArrayLite argmax_x, DArrayLite grad_input,
|
||||
int aligned_height, int aligned_width, float spatial_scale,
|
||||
int sampling_ratio, int pool_mode, bool aligned, cudaStream_t stream) {
|
||||
DArrayLite grad_output, DArrayLite rois, DArrayLite argmax_y,
|
||||
DArrayLite argmax_x, DArrayLite grad_input, int aligned_height,
|
||||
int aligned_width, float spatial_scale, int sampling_ratio, int pool_mode,
|
||||
bool aligned, cudaStream_t stream) {
|
||||
int output_size = grad_output.size();
|
||||
int channels = grad_input.dim(1);
|
||||
int height = grad_input.dim(2);
|
||||
|
@ -44,8 +43,8 @@ void ROIAlignBackwardCUDAKernelLauncher(
|
|||
output_size, grad_output.ptr<scalar_t>(), rois.ptr<scalar_t>(),
|
||||
argmax_y.ptr<scalar_t>(), argmax_x.ptr<scalar_t>(),
|
||||
grad_input.ptr<scalar_t>(), aligned_height, aligned_width,
|
||||
spatial_scale, sampling_ratio, pool_mode, aligned, channels,
|
||||
height, width);
|
||||
static_cast<scalar_t>(spatial_scale), sampling_ratio, pool_mode,
|
||||
aligned, channels, height, width);
|
||||
}));
|
||||
|
||||
PARROTS_CUDA_CHECK(cudaGetLastError());
|
||||
|
|
|
@ -8,4 +8,33 @@
|
|||
|
||||
using namespace parrots;
|
||||
|
||||
#define PARROTS_PRIVATE_CASE_TYPE(prim_type, type, ...) \
|
||||
case prim_type: { \
|
||||
using scalar_t = type; \
|
||||
return __VA_ARGS__(); \
|
||||
}
|
||||
|
||||
#define PARROTS_DISPATCH_FLOATING_TYPES(TYPE, ...) \
|
||||
[&] { \
|
||||
const auto& the_type = TYPE; \
|
||||
switch (the_type) { \
|
||||
PARROTS_PRIVATE_CASE_TYPE(Prim::Float64, double, __VA_ARGS__) \
|
||||
PARROTS_PRIVATE_CASE_TYPE(Prim::Float32, float, __VA_ARGS__) \
|
||||
default: \
|
||||
PARROTS_NOTSUPPORTED; \
|
||||
} \
|
||||
}()
|
||||
|
||||
#define PARROTS_DISPATCH_FLOATING_TYPES_AND_HALF(TYPE, ...) \
|
||||
[&] { \
|
||||
const auto& the_type = TYPE; \
|
||||
switch (the_type) { \
|
||||
PARROTS_PRIVATE_CASE_TYPE(Prim::Float64, double, __VA_ARGS__) \
|
||||
PARROTS_PRIVATE_CASE_TYPE(Prim::Float32, float, __VA_ARGS__) \
|
||||
PARROTS_PRIVATE_CASE_TYPE(Prim::Float16, float16, __VA_ARGS__) \
|
||||
default: \
|
||||
PARROTS_NOTSUPPORTED; \
|
||||
} \
|
||||
}()
|
||||
|
||||
#endif // PARROTS_CPP_HELPER
|
||||
|
|
|
@ -56,7 +56,11 @@ def _test_roialign_gradcheck(device, dtype):
|
|||
|
||||
froipool = RoIAlign((pool_h, pool_w), spatial_scale, sampling_ratio)
|
||||
|
||||
gradcheck(froipool, (x, rois), eps=1e-5, atol=1e-5)
|
||||
if torch.__version__ == 'parrots':
|
||||
gradcheck(
|
||||
froipool, (x, rois), no_grads=[rois], delta=1e-5, pt_atol=1e-5)
|
||||
else:
|
||||
gradcheck(froipool, (x, rois), eps=1e-5, atol=1e-5)
|
||||
|
||||
|
||||
def _test_roialign_allclose(device, dtype):
|
||||
|
|
Loading…
Reference in New Issue