[Feature] : Add ScatterND TensorRT Plugin (#786)

* add scatter plugin

* fix bugs of scatternd

* add trt scatternd plugin

* format code with clang-format

* add test for scatternd

* skip test_tensorrt in CI

* remove unused variable

Co-authored-by: maningsheng <maningsheng@sensetime.com>
pull/796/head
q.yao 2021-01-20 11:15:07 +08:00 committed by GitHub
parent 8e3a801596
commit 2ab544fc29
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 509 additions and 10 deletions

View File

@ -1,8 +1,10 @@
#include "trt_plugin.hpp"
#include "trt_roi_align.hpp"
#include "trt_scatternd.hpp"
REGISTER_TENSORRT_PLUGIN(RoIAlignPluginDynamicCreator);
REGISTER_TENSORRT_PLUGIN(ONNXScatterNDDynamicCreator);
extern "C" {
bool initLibMMCVInferPlugins() { return true; }

View File

@ -0,0 +1,206 @@
#include "trt_scatternd.hpp"
#include <assert.h>
#include <stdio.h>
#include <chrono>
#include "trt_serialize.hpp"
extern void TRTONNXScatterNDKernelLauncher_float(
const float *data, const int *indices, const float *update, const int *dims,
int nbDims, const int *indices_dims, int indice_nbDims, float *output,
cudaStream_t stream);
extern void TRTONNXScatterNDKernelLauncher_int32(
const int *data, const int *indices, const int *update, const int *dims,
int nbDims, const int *indices_dims, int indice_nbDims, int *output,
cudaStream_t stream);
namespace {
static const char *PLUGIN_VERSION{"1"};
static const char *PLUGIN_NAME{"ScatterND"};
} // namespace
nvinfer1::PluginFieldCollection ONNXScatterNDDynamicCreator::mFC{};
std::vector<nvinfer1::PluginField>
ONNXScatterNDDynamicCreator::mPluginAttributes;
ONNXScatterNDDynamic::ONNXScatterNDDynamic(const std::string &name)
: mLayerName(name) {}
ONNXScatterNDDynamic::ONNXScatterNDDynamic(const std::string name,
const void *data, size_t length)
: mLayerName(name) {}
nvinfer1::IPluginV2DynamicExt *ONNXScatterNDDynamic::clone() const {
ONNXScatterNDDynamic *plugin = new ONNXScatterNDDynamic(mLayerName);
plugin->setPluginNamespace(getPluginNamespace());
return plugin;
}
nvinfer1::DimsExprs ONNXScatterNDDynamic::getOutputDimensions(
int outputIndex, const nvinfer1::DimsExprs *inputs, int nbInputs,
nvinfer1::IExprBuilder &exprBuilder) {
return inputs[0];
}
bool ONNXScatterNDDynamic::supportsFormatCombination(
int pos, const nvinfer1::PluginTensorDesc *inOut, int nbInputs,
int nbOutputs) {
if (pos < nbInputs) {
switch (pos) {
case 0:
// data
return (inOut[pos].type == nvinfer1::DataType::kFLOAT &&
inOut[pos].format == nvinfer1::TensorFormat::kLINEAR) ||
(inOut[pos].type == nvinfer1::DataType::kINT32 &&
inOut[pos].format == nvinfer1::TensorFormat::kLINEAR);
case 1:
// indices
return inOut[pos].type == nvinfer1::DataType::kINT32 &&
inOut[pos].format == nvinfer1::TensorFormat::kLINEAR;
case 2:
// updates
return inOut[pos].type == inOut[0].type &&
inOut[pos].format == inOut[0].format;
default:
return true;
}
} else {
switch (pos - nbInputs) {
case 0:
// output
return inOut[pos].type == inOut[0].type &&
inOut[pos].format == inOut[0].format;
default:
return true;
}
}
return true;
}
void ONNXScatterNDDynamic::configurePlugin(
const nvinfer1::DynamicPluginTensorDesc *inputs, int nbInputs,
const nvinfer1::DynamicPluginTensorDesc *outputs, int nbOutputs) {}
size_t ONNXScatterNDDynamic::getWorkspaceSize(
const nvinfer1::PluginTensorDesc *inputs, int nbInputs,
const nvinfer1::PluginTensorDesc *outputs, int nbOutputs) const {
return 0;
}
int ONNXScatterNDDynamic::enqueue(const nvinfer1::PluginTensorDesc *inputDesc,
const nvinfer1::PluginTensorDesc *outputDesc,
const void *const *inputs,
void *const *outputs, void *workSpace,
cudaStream_t stream) {
const int *dims = &(inputDesc[0].dims.d[0]);
const int *indices_dims = &(inputDesc[1].dims.d[0]);
int nbDims = inputDesc[0].dims.nbDims;
int indice_nbDims = inputDesc[1].dims.nbDims;
const void *data = inputs[0];
const void *indices = inputs[1];
const void *update = inputs[2];
void *output = outputs[0];
auto data_type = inputDesc[0].type;
switch (data_type) {
case nvinfer1::DataType::kFLOAT:
TRTONNXScatterNDKernelLauncher_float(
(float *)data, (int *)indices, (float *)update, dims, nbDims,
indices_dims, indice_nbDims, (float *)output, stream);
break;
case nvinfer1::DataType::kINT32:
TRTONNXScatterNDKernelLauncher_int32(
(int *)data, (int *)indices, (int *)update, dims, nbDims,
indices_dims, indice_nbDims, (int *)output, stream);
break;
default:
break;
}
return 0;
}
nvinfer1::DataType ONNXScatterNDDynamic::getOutputDataType(
int index, const nvinfer1::DataType *inputTypes, int nbInputs) const {
return inputTypes[0];
}
// IPluginV2 Methods
const char *ONNXScatterNDDynamic::getPluginType() const { return PLUGIN_NAME; }
const char *ONNXScatterNDDynamic::getPluginVersion() const {
return PLUGIN_VERSION;
}
int ONNXScatterNDDynamic::getNbOutputs() const { return 1; }
int ONNXScatterNDDynamic::initialize() { return 0; }
void ONNXScatterNDDynamic::terminate() {}
size_t ONNXScatterNDDynamic::getSerializationSize() const { return 0; }
void ONNXScatterNDDynamic::serialize(void *buffer) const {}
void ONNXScatterNDDynamic::destroy() {
// This gets called when the network containing plugin is destroyed
delete this;
}
void ONNXScatterNDDynamic::setPluginNamespace(const char *libNamespace) {
mNamespace = libNamespace;
}
const char *ONNXScatterNDDynamic::getPluginNamespace() const {
return mNamespace.c_str();
}
////////////////////// creator /////////////////////////////
ONNXScatterNDDynamicCreator::ONNXScatterNDDynamicCreator() {
mPluginAttributes.clear();
mFC.nbFields = mPluginAttributes.size();
mFC.fields = mPluginAttributes.data();
}
const char *ONNXScatterNDDynamicCreator::getPluginName() const {
return PLUGIN_NAME;
}
const char *ONNXScatterNDDynamicCreator::getPluginVersion() const {
return PLUGIN_VERSION;
}
const nvinfer1::PluginFieldCollection *
ONNXScatterNDDynamicCreator::getFieldNames() {
return &mFC;
}
nvinfer1::IPluginV2 *ONNXScatterNDDynamicCreator::createPlugin(
const char *name, const nvinfer1::PluginFieldCollection *fc) {
ONNXScatterNDDynamic *plugin = new ONNXScatterNDDynamic(name);
plugin->setPluginNamespace(getPluginNamespace());
return plugin;
}
nvinfer1::IPluginV2 *ONNXScatterNDDynamicCreator::deserializePlugin(
const char *name, const void *serialData, size_t serialLength) {
auto plugin = new ONNXScatterNDDynamic(name, serialData, serialLength);
plugin->setPluginNamespace(getPluginNamespace());
return plugin;
}
void ONNXScatterNDDynamicCreator::setPluginNamespace(const char *libNamespace) {
mNamespace = libNamespace;
}
const char *ONNXScatterNDDynamicCreator::getPluginNamespace() const {
return mNamespace.c_str();
}

View File

@ -0,0 +1,92 @@
#include <stdio.h>
#include <vector>
#include "common_cuda_helper.hpp"
#include "trt_cuda_helper.cuh"
#include "trt_plugin_helper.hpp"
static int const threadsPerBlock = sizeof(unsigned long long int) * 8;
using mmcv::TensorDesc;
template <typename T>
__global__ void onnx_scatternd_kernel(const int n, const int* indices,
const T* update, T* output,
TensorDesc tensor_desc,
TensorDesc indice_desc) {
const int indice_cols = indice_desc.shape[indice_desc.dim - 1];
const int copy_stride = tensor_desc.stride[indice_cols - 1];
const int* stride = &(tensor_desc.stride[0]);
CUDA_1D_KERNEL_LOOP(index, n) {
int output_offset = 0;
const int* indices_current = indices + index * indice_cols;
for (int i = 0; i < indice_cols; ++i) {
output_offset += stride[i] * indices_current[i];
}
memcpy(output + output_offset, update + index * copy_stride,
copy_stride * sizeof(T));
}
}
template <typename T>
void TRTONNXScatterNDKernelLauncher(const T* data, const int* indices,
const T* update, const int* dims,
int nbDims, const int* indices_dims,
int indice_nbDims, T* output,
cudaStream_t stream) {
// fill tensordesc and initial
TensorDesc tensor_desc;
memset((void*)&tensor_desc, 0, sizeof(TensorDesc));
tensor_desc.dim = nbDims;
tensor_desc.shape[nbDims - 1] = dims[nbDims - 1];
tensor_desc.stride[nbDims - 1] = 1;
for (int i = nbDims - 2; i >= 0; --i) {
tensor_desc.shape[i] = dims[i];
tensor_desc.stride[i] = dims[i + 1] * tensor_desc.stride[i + 1];
}
const int data_size = tensor_desc.stride[0] * tensor_desc.shape[0];
TensorDesc indice_desc;
memset((void*)&indice_desc, 0, sizeof(TensorDesc));
indice_desc.dim = indice_nbDims;
indice_desc.shape[indice_nbDims - 1] = indices_dims[indice_nbDims - 1];
indice_desc.stride[indice_nbDims - 1] = 1;
for (int i = indice_nbDims - 2; i >= 0; --i) {
indice_desc.shape[i] = indices_dims[i];
indice_desc.stride[i] = indices_dims[i + 1] * indice_desc.stride[i + 1];
}
// output = np.copy(data)
cudaMemcpyAsync(output, data, data_size * sizeof(T),
cudaMemcpyDeviceToDevice);
int num_update_indice = 1;
for (int i = 0; i < indice_nbDims - 1; ++i) {
num_update_indice *= indice_desc.shape[i];
}
// scatter
const int col_block = DIVUP(num_update_indice, threadsPerBlock);
onnx_scatternd_kernel<<<col_block, threadsPerBlock, 0, stream>>>(
num_update_indice, indices, update, output, tensor_desc, indice_desc);
}
void TRTONNXScatterNDKernelLauncher_float(const float* data, const int* indices,
const float* update, const int* dims,
int nbDims, const int* indices_dims,
int indice_nbDims, float* output,
cudaStream_t stream) {
TRTONNXScatterNDKernelLauncher<float>(data, indices, update, dims, nbDims,
indices_dims, indice_nbDims, output,
stream);
}
void TRTONNXScatterNDKernelLauncher_int32(const int* data, const int* indices,
const int* update, const int* dims,
int nbDims, const int* indices_dims,
int indice_nbDims, int* output,
cudaStream_t stream) {
TRTONNXScatterNDKernelLauncher<int>(data, indices, update, dims, nbDims,
indices_dims, indice_nbDims, output,
stream);
}

View File

@ -0,0 +1,16 @@
#ifndef TRT_CUDA_HELPER_HPP
#define TRT_CUDA_HELPER_HPP
#define DIVUP(m, n) ((m) / (n) + ((m) % (n) > 0))
#define cudaCheckError() \
{ \
cudaError_t e = cudaGetLastError(); \
if (e != cudaSuccess) { \
printf("Cuda failure %s:%d: '%s'\n", __FILE__, __LINE__, \
cudaGetErrorString(e)); \
exit(0); \
} \
}
#endif // TRT_CUDA_HELPER_HPP

View File

@ -6,6 +6,14 @@
namespace mmcv {
const int MAXTENSORDIMS = 10;
struct TensorDesc {
int shape[MAXTENSORDIMS];
int stride[MAXTENSORDIMS];
int dim;
};
inline unsigned int getElementSize(nvinfer1::DataType t) {
switch (t) {
case nvinfer1::DataType::kINT32:

View File

@ -0,0 +1,98 @@
#ifndef TRT_SCATTERND_HPP
#define TRT_SCATTERND_HPP
#include <cublas_v2.h>
#include <memory>
#include <string>
#include <vector>
#include "trt_plugin_helper.hpp"
class ONNXScatterNDDynamic : public nvinfer1::IPluginV2DynamicExt {
public:
ONNXScatterNDDynamic(const std::string &name);
ONNXScatterNDDynamic(const std::string name, const void *data, size_t length);
ONNXScatterNDDynamic() = delete;
// IPluginV2DynamicExt Methods
nvinfer1::IPluginV2DynamicExt *clone() const override;
nvinfer1::DimsExprs getOutputDimensions(
int outputIndex, const nvinfer1::DimsExprs *inputs, int nbInputs,
nvinfer1::IExprBuilder &exprBuilder) override;
bool supportsFormatCombination(int pos,
const nvinfer1::PluginTensorDesc *inOut,
int nbInputs, int nbOutputs) override;
void configurePlugin(const nvinfer1::DynamicPluginTensorDesc *in,
int nbInputs,
const nvinfer1::DynamicPluginTensorDesc *out,
int nbOutputs) override;
size_t getWorkspaceSize(const nvinfer1::PluginTensorDesc *inputs,
int nbInputs,
const nvinfer1::PluginTensorDesc *outputs,
int nbOutputs) const override;
int enqueue(const nvinfer1::PluginTensorDesc *inputDesc,
const nvinfer1::PluginTensorDesc *outputDesc,
const void *const *inputs, void *const *outputs, void *workspace,
cudaStream_t stream) override;
// IPluginV2Ext Methods
nvinfer1::DataType getOutputDataType(int index,
const nvinfer1::DataType *inputTypes,
int nbInputs) const override;
// IPluginV2 Methods
const char *getPluginType() const override;
const char *getPluginVersion() const override;
int getNbOutputs() const override;
int initialize() override;
void terminate() override;
size_t getSerializationSize() const override;
void serialize(void *buffer) const override;
void destroy() override;
void setPluginNamespace(const char *pluginNamespace) override;
const char *getPluginNamespace() const override;
private:
const std::string mLayerName;
std::string mNamespace;
protected:
// To prevent compiler warnings.
using nvinfer1::IPluginV2DynamicExt::canBroadcastInputAcrossBatch;
using nvinfer1::IPluginV2DynamicExt::configurePlugin;
using nvinfer1::IPluginV2DynamicExt::enqueue;
using nvinfer1::IPluginV2DynamicExt::getOutputDimensions;
using nvinfer1::IPluginV2DynamicExt::getWorkspaceSize;
using nvinfer1::IPluginV2DynamicExt::isOutputBroadcastAcrossBatch;
using nvinfer1::IPluginV2DynamicExt::supportsFormat;
};
class ONNXScatterNDDynamicCreator : public nvinfer1::IPluginCreator {
public:
ONNXScatterNDDynamicCreator();
const char *getPluginName() const override;
const char *getPluginVersion() const override;
const nvinfer1::PluginFieldCollection *getFieldNames() override;
nvinfer1::IPluginV2 *createPlugin(
const char *name, const nvinfer1::PluginFieldCollection *fc) override;
nvinfer1::IPluginV2 *deserializePlugin(const char *name,
const void *serialData,
size_t serialLength) override;
void setPluginNamespace(const char *pluginNamespace) override;
const char *getPluginNamespace() const override;
private:
static nvinfer1::PluginFieldCollection mFC;
static std::vector<nvinfer1::PluginField> mPluginAttributes;
std::string mNamespace;
};
#endif // TRT_SCATTERND_HPP

View File

@ -5,21 +5,38 @@ import onnx
import pytest
import torch
try:
from mmcv.tensorrt import (TRTWraper, is_tensorrt_plugin_loaded, onnx2trt,
save_trt_engine)
except ImportError:
pytest.skip(
'TensorRT should be installed from source.', allow_module_level=True)
if not torch.cuda.is_available():
pytest.skip(
'CUDA is required for this test module', allow_module_level=True)
if not is_tensorrt_plugin_loaded():
pytest.skip(
'Test requires to complie TensorRT plugins in mmcv',
allow_module_level=True)
class WrapFunction(torch.nn.Module):
def __init__(self, wrapped_function):
super(WrapFunction, self).__init__()
self.wrapped_function = wrapped_function
def forward(self, *args, **kwargs):
return self.wrapped_function(*args, **kwargs)
onnx_file = 'tmp.onnx'
trt_file = 'tmp.engine'
@pytest.mark.skipif(
not torch.cuda.is_available(), reason='CUDA is required for test_roialign')
def test_roialign():
try:
from mmcv.tensorrt import (TRTWraper, onnx2trt, save_trt_engine,
is_tensorrt_plugin_loaded)
if not is_tensorrt_plugin_loaded():
pytest.skip('test requires to complie TensorRT plugins in mmcv')
except (ImportError, ModuleNotFoundError):
pytest.skip('test requires to install TensorRT from source.')
try:
from mmcv.ops import RoIAlign
except (ImportError, ModuleNotFoundError):
@ -91,3 +108,63 @@ def test_roialign():
if os.path.exists(trt_file):
os.remove(trt_file)
assert torch.allclose(pytorch_roi_feat, trt_roi_feat)
def test_scatternd():
def func(data):
data[:, :-2] += 1
data[:2, :] -= 1
return data
data = torch.zeros(4, 4).cuda()
wrapped_model = WrapFunction(func).eval().cuda()
input_names = ['input']
output_names = ['output']
with torch.no_grad():
torch.onnx.export(
wrapped_model, (data.clone(), ),
onnx_file,
export_params=True,
keep_initializers_as_inputs=True,
input_names=input_names,
output_names=output_names,
opset_version=11)
onnx_model = onnx.load(onnx_file)
# create trt engine and wraper
opt_shape_dict = {
'input': [list(data.shape),
list(data.shape),
list(data.shape)],
}
# trt config
fp16_mode = False
max_workspace_size = 1 << 30
trt_engine = onnx2trt(
onnx_model,
opt_shape_dict,
fp16_mode=fp16_mode,
max_workspace_size=max_workspace_size)
save_trt_engine(trt_engine, trt_file)
trt_model = TRTWraper(trt_file, input_names, output_names)
with torch.no_grad():
trt_outputs = trt_model({'input': data.clone()})
trt_results = trt_outputs['output']
# compute pytorch_output
with torch.no_grad():
pytorch_results = wrapped_model(data.clone())
# allclose
if os.path.exists(onnx_file):
os.remove(onnx_file)
if os.path.exists(trt_file):
os.remove(trt_file)
assert torch.allclose(pytorch_results, trt_results)