use weight init methods

pull/15/head
Kai Chen 2018-10-10 00:03:16 +08:00
parent 6243822627
commit 3333bab612
4 changed files with 17 additions and 14 deletions

View File

@ -1,9 +1,11 @@
from .alexnet import AlexNet
from .vgg import VGG, make_vgg_layer
from .resnet import ResNet, make_res_layer
from .weight_init import xavier_init, normal_init, uniform_init, kaiming_init
from .weight_init import (constant_init, xavier_init, normal_init,
uniform_init, kaiming_init)
__all__ = [
'AlexNet', 'VGG', 'make_vgg_layer', 'ResNet', 'make_res_layer',
'xavier_init', 'normal_init', 'uniform_init', 'kaiming_init'
'constant_init', 'xavier_init', 'normal_init', 'uniform_init',
'kaiming_init'
]

View File

@ -4,6 +4,7 @@ import math
import torch.nn as nn
import torch.utils.checkpoint as cp
from .weight_init import constant_init, kaiming_init
from ..runner import load_checkpoint
@ -268,11 +269,9 @@ class ResNet(nn.Module):
elif pretrained is None:
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
nn.init.normal_(m.weight, 0, math.sqrt(2. / n))
kaiming_init(m)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
constant_init(m, 1)
else:
raise TypeError('pretrained must be a str or None')

View File

@ -2,6 +2,7 @@ import logging
import torch.nn as nn
from .weight_init import constant_init, normal_init, kaiming_init
from ..runner import load_checkpoint
@ -112,16 +113,11 @@ class VGG(nn.Module):
elif pretrained is None:
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(
m.weight, mode='fan_out', nonlinearity='relu')
if m.bias is not None:
nn.init.constant_(m.bias, 0)
kaiming_init(m)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
constant_init(m, 1)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.constant_(m.bias, 0)
normal_init(m, std=0.01)
else:
raise TypeError('pretrained must be a str or None')

View File

@ -1,6 +1,12 @@
import torch.nn as nn
def constant_init(module, val, bias=0):
nn.init.constant_(module.weight, val)
if hasattr(module, 'bias'):
nn.init.constant_(module.bias, bias)
def xavier_init(module, gain=1, bias=0, distribution='normal'):
assert distribution in ['uniform', 'normal']
if distribution == 'uniform':