[Feature] Add C++ implementation for bbox_overlaps (#2477)

* add ops bbox_overlaps

* format code

* Return the pytorch version

* Intermediate modification

* Solve problems in parameter passing

* revise bug

* "add test case"
pull/2574/head
enemy1205 2023-01-31 00:04:35 +08:00 committed by GitHub
parent db391c50a3
commit 422816e45c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 82 additions and 17 deletions

View File

@ -106,25 +106,17 @@ def bbox_overlaps(bboxes1: torch.Tensor,
rows = bboxes1.size(0)
cols = bboxes2.size(0)
if aligned:
assert rows == cols
ious = bboxes1.new_zeros(rows)
else:
ious = bboxes1.new_zeros((rows, cols))
if rows * cols == 0:
return bboxes1.new(rows, 1) if aligned else bboxes1.new(rows, cols)
if bboxes1.device.type == 'cpu':
return _bbox_overlaps_cpu(
bboxes1, bboxes2, mode=mode, aligned=aligned, offset=offset)
else:
if aligned:
ious = bboxes1.new_zeros(rows)
else:
ious = bboxes1.new_zeros((rows, cols))
ext_module.bbox_overlaps(
bboxes1,
bboxes2,
ious,
mode=mode_flag,
aligned=aligned,
offset=offset)
return ious
ext_module.bbox_overlaps(
bboxes1, bboxes2, ious, mode=mode_flag, aligned=aligned, offset=offset)
return ious

View File

@ -0,0 +1,65 @@
// Copyright(c) OpenMMLab.All rights reserved.
#include "pytorch_cpp_helper.hpp"
#include "pytorch_device_registry.hpp"
using torch::indexing::None;
using torch::indexing::Slice;
void bbox_overlaps_cpu_kernel(const Tensor boxes1, const Tensor boxes2,
Tensor ious, const int mode_flag,
const bool aligned, const int offset) {
Tensor temp_ious;
if (aligned) {
Tensor lt = torch::max(boxes1.index({Slice(None), Slice({None, 2})}),
boxes2.index({Slice(None), Slice({None, 2})}));
Tensor rb = torch::min(boxes1.index({Slice(None), Slice(2)}),
boxes2.index({Slice(None), Slice(2)}));
Tensor wh = (rb - lt + offset).clamp(0.f, INT_MAX * 1.f);
Tensor overlap = wh.index({Slice(None), 0}) * wh.index({Slice(None), 1});
Tensor area1 = (boxes1.index({Slice(None), 2}) -
boxes1.index({Slice(None), 0}) + offset) *
(boxes1.index({Slice(None), 3}) -
boxes1.index({Slice(None), 1}) + offset);
if (mode_flag == 0) {
Tensor area2 = (boxes2.index({Slice(None), 2}) -
boxes2.index({Slice(None), 0}) + offset) *
(boxes2.index({Slice(None), 3}) -
boxes2.index({Slice(None), 1}) + offset);
temp_ious = overlap / (area1 + area2 - overlap);
} else {
temp_ious = overlap / area1;
}
} else {
Tensor lt = torch::max(boxes1.index({Slice(None), None, Slice({None, 2})}),
boxes2.index({Slice(None), Slice({None, 2})}));
Tensor rb = torch::min(boxes1.index({Slice(None), None, Slice(2)}),
boxes2.index({Slice(None), Slice(2)}));
Tensor wh = (rb - lt + offset).clamp(0.f, INT_MAX * 1.f);
Tensor overlap = wh.index({"...", 0}) * wh.index({"...", 1});
Tensor area1 = (boxes1.index({Slice(None), 2}) -
boxes1.index({Slice(None), 0}) + offset) *
(boxes1.index({Slice(None), 3}) -
boxes1.index({Slice(None), 1}) + offset);
if (mode_flag == 0) {
Tensor area2 = (boxes2.index({Slice(None), 2}) -
boxes2.index({Slice(None), 0}) + offset) *
(boxes2.index({Slice(None), 3}) -
boxes2.index({Slice(None), 1}) + offset);
temp_ious =
overlap / (area1.index({Slice(None), None}) + area2 - overlap);
} else {
temp_ious = overlap / area1.index({Slice(None), None});
}
}
ious.copy_(temp_ious);
}
void bbox_overlaps_cpu(const Tensor boxes1, const Tensor boxes2, Tensor ious,
const int mode, const bool aligned, const int offset) {
bbox_overlaps_cpu_kernel(boxes1, boxes2, ious, mode, aligned, offset);
}
void bbox_overlaps_impl(const Tensor boxes1, const Tensor boxes2, Tensor ious,
const int mode, const bool aligned, const int offset);
REGISTER_DEVICE_IMPL(bbox_overlaps_impl, CPU, bbox_overlaps_cpu);

View File

@ -34,6 +34,14 @@ class TestBBox:
out = bbox_overlaps(b1, b2, offset=1)
assert np.allclose(out.cpu().numpy(), should_output, 1e-2)
b1 = torch.tensor([[10.0 + i, 10.0 + i, 30.0 + i, 30.0 + i]
for i in range(1000)]).to(device).type(dtype)
b2 = torch.tensor([[20.0 + i, 20.0 + i, 40.0 + i, 40.0 + i]
for i in range(1000)]).to(device).type(dtype)
should_output = np.array([1 / 7] * 1000)
out = bbox_overlaps(b1, b2, aligned=True)
assert np.allclose(out.cpu().numpy(), should_output, 1e-2)
@pytest.mark.parametrize('device', [
'cpu',
pytest.param(