[Docs] Refactor readme.md (#984)

* [Docs] Refactor readme.md

* use lowercase
pull/992/head
Zaida Zhou 2021-04-25 19:25:14 +08:00 committed by GitHub
parent 5a99f587ed
commit 478563888e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 38 additions and 36 deletions

View File

@ -11,15 +11,16 @@ English | [简体中文](README_zh-CN.md)
MMCV is a foundational library for computer vision research and supports many
research projects as below:
- [MMDetection](https://github.com/open-mmlab/mmdetection): Detection toolbox and benchmark
- [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): General 3D object detection toolbox and benchmark
- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): Semantic segmentation toolbox and benchmark
- [MMEditing](https://github.com/open-mmlab/mmediting): Image and video editing toolbox
- [MMPose](https://github.com/open-mmlab/mmpose): Pose estimation toolbox and benchmark
- [MMAction2](https://github.com/open-mmlab/mmaction2): Action understanding toolbox and benchmark
- [MMTracking](https://github.com/open-mmlab/mmtracking): Video perception toolbox and benchmark
- [MMClassification](https://github.com/open-mmlab/mmclassification): Image classification toolbox and benchmark
- [MMOCR](https://github.com/open-mmlab/mmocr): A Comprehensive Toolbox for Text Detection, Recognition and Understanding
- [MMClassification](https://github.com/open-mmlab/mmclassification): OpenMMLab image classification toolbox and benchmark.
- [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab detection toolbox and benchmark.
- [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab's next-generation platform for general 3D object detection.
- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab semantic segmentation toolbox and benchmark.
- [MMAction2](https://github.com/open-mmlab/mmaction2): OpenMMLab's next-generation action understanding toolbox and benchmark.
- [MMTracking](https://github.com/open-mmlab/mmtracking): OpenMMLab video perception toolbox and benchmark.
- [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab pose estimation toolbox and benchmark.
- [MMEditing](https://github.com/open-mmlab/mmediting): OpenMMLab image and video editing toolbox.
- [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab text detection, recognition and understanding toolbox.
- [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab image and video generative models toolbox.
It provides the following functionalities.
@ -39,18 +40,12 @@ Note: MMCV requires Python 3.6+.
There are two versions of MMCV:
- **mmcv**: lite, without CUDA ops but all other features, similar to mmcv<1.0.0. It is useful when you do not need those CUDA ops.
- **mmcv-full**: comprehensive, with full features and various CUDA ops out of box. It takes longer time to build.
- **mmcv**: lite, without CUDA ops but all other features, similar to mmcv<1.0.0. It is useful when you do not need those CUDA ops.
**Note**: Do not install both versions in the same environment, otherwise you may encounter errors like `ModuleNotFound`. You need to uninstall one before installing the other.
**Note**: Do not install both versions in the same environment, otherwise you may encounter errors like `ModuleNotFound`. You need to uninstall one before installing the other. `Installing the full verion is highly recommended if CUDA is avaliable`.
a. Install the lite version.
```python
pip install mmcv
```
b. Install the full version.
a. Install the full version.
Before installing mmcv-full, make sure that PyTorch has been successfully installed following the [official guide](https://pytorch.org/).
@ -167,6 +162,12 @@ pip install mmcv-full
Note that the local compiling may take up to 10 mins.
b. Install the lite version.
```python
pip install mmcv
```
c. Install full version with custom operators for onnxruntime
- Check [here](docs/onnxruntime_op.md) for detailed instruction.

View File

@ -10,15 +10,16 @@
MMCV 是一个面向计算机视觉的基础库,它支持了很多开源项目,例如:
- [MMDetection](https://github.com/open-mmlab/mmdetection): 目标检测工具箱
- [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): 新一代通用 3D 目标检测平台
- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): 语义分割工具箱
- [MMEditing](https://github.com/open-mmlab/mmediting): 图像视频编辑工具箱
- [MMPose](https://github.com/open-mmlab/mmpose): 姿态估计工具箱
- [MMAction2](https://github.com/open-mmlab/mmaction2): 新一代视频理解工具箱
- [MMTracking](https://github.com/open-mmlab/mmtracking): 一体化视频目标感知平台
- [MMClassification](https://github.com/open-mmlab/mmclassification): 图像分类工具箱
- [MMOCR](https://github.com/open-mmlab/mmocr): 全流程文字检测识别理解工具包
- [MMClassification](https://github.com/open-mmlab/mmclassification): OpenMMLab 图像分类工具箱
- [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab 目标检测工具箱
- [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab 新一代通用 3D 目标检测平台
- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab 语义分割工具箱
- [MMAction2](https://github.com/open-mmlab/mmaction2): OpenMMLab 新一代视频理解工具箱
- [MMTracking](https://github.com/open-mmlab/mmtracking): OpenMMLab 一体化视频目标感知平台
- [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab 姿态估计工具箱
- [MMEditing](https://github.com/open-mmlab/mmediting): OpenMMLab 图像视频编辑工具箱
- [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab 全流程文字检测识别理解工具包
- [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab 图片视频生成模型工具箱
MMCV 提供了如下众多功能:
@ -38,18 +39,12 @@ MMCV 提供了如下众多功能:
MMCV 有两个版本:
- **mmcv**: 精简版,不包含 CUDA 算子但包含其余所有特性和功能,类似 MMCV 1.0 之前的版本。如果你不需要使用 CUDA 算子的话,精简版可以作为一个考虑选项。
- **mmcv-full**: 完整版,包含所有的特性以及丰富的开箱即用的 CUDA 算子。注意完整版本可能需要更长时间来编译。
- **mmcv**: 精简版,不包含 CUDA 算子但包含其余所有特性和功能,类似 MMCV 1.0 之前的版本。如果你不需要使用 CUDA 算子的话,精简版可以作为一个考虑选项。
**注意**: 请不要在同一个环境中安装两个版本,否则可能会遇到类似 `ModuleNotFound` 的错误。在安装一个版本之前,需要先卸载另一个。
**注意**: 请不要在同一个环境中安装两个版本,否则可能会遇到类似 `ModuleNotFound` 的错误。在安装一个版本之前,需要先卸载另一个。`如果CUDA可用强烈推荐安装mmcv-full`。
a. 安装精简版
```python
pip install mmcv
```
b. 安装完整版
a. 安装完整版
在安装 mmcv-full 之前,请确保 PyTorch 已经成功安装在环境中,可以参考 PyTorch 官方[文档](https://pytorch.org/)。
@ -164,6 +159,12 @@ pip install mmcv-full
但注意本地编译可能会耗时 10 分钟以上。
b. 安装精简版
```python
pip install mmcv
```
c. 安装完整版并且编译 onnxruntime 的自定义算子
- 详细的指南请查看 [这里](docs/onnxruntime_op.md)。