mirror of https://github.com/open-mmlab/mmcv.git
minor format adjustment
parent
64afdd0afa
commit
4b2abfcf24
|
@ -4,7 +4,6 @@ from .resnet import ResNet, make_res_layer
|
||||||
from .weight_init import xavier_init, normal_init, uniform_init, kaiming_init
|
from .weight_init import xavier_init, normal_init, uniform_init, kaiming_init
|
||||||
|
|
||||||
__all__ = [
|
__all__ = [
|
||||||
'AlexNet', 'VGG', 'make_vgg_layer',
|
'AlexNet', 'VGG', 'make_vgg_layer', 'ResNet', 'make_res_layer',
|
||||||
'ResNet', 'make_res_layer', 'xavier_init', 'normal_init', 'uniform_init',
|
'xavier_init', 'normal_init', 'uniform_init', 'kaiming_init'
|
||||||
'kaiming_init'
|
|
||||||
]
|
]
|
||||||
|
|
|
@ -16,15 +16,10 @@ def conv3x3(in_planes, out_planes, dilation=1, bias=False):
|
||||||
bias=bias)
|
bias=bias)
|
||||||
|
|
||||||
|
|
||||||
def make_vgg_layer(inplanes,
|
def make_vgg_layer(inplanes, planes, num_blocks, dilation=1, with_bn=False):
|
||||||
planes,
|
|
||||||
num_blocks,
|
|
||||||
dilation=1,
|
|
||||||
with_bn=False):
|
|
||||||
layers = []
|
layers = []
|
||||||
for _ in range(num_blocks):
|
for _ in range(num_blocks):
|
||||||
layers.append(
|
layers.append(conv3x3(inplanes, planes, dilation, not with_bn))
|
||||||
conv3x3(inplanes, planes, dilation, not with_bn))
|
|
||||||
if with_bn:
|
if with_bn:
|
||||||
layers.append(nn.BatchNorm2d(planes))
|
layers.append(nn.BatchNorm2d(planes))
|
||||||
layers.append(nn.ReLU(inplace=True))
|
layers.append(nn.ReLU(inplace=True))
|
||||||
|
@ -89,11 +84,11 @@ class VGG(nn.Module):
|
||||||
dilation = dilations[i]
|
dilation = dilations[i]
|
||||||
planes = 64 * 2**i if i < 4 else 512
|
planes = 64 * 2**i if i < 4 else 512
|
||||||
vgg_layer = make_vgg_layer(
|
vgg_layer = make_vgg_layer(
|
||||||
self.inplanes,
|
self.inplanes,
|
||||||
planes,
|
planes,
|
||||||
num_blocks,
|
num_blocks,
|
||||||
dilation=dilation,
|
dilation=dilation,
|
||||||
with_bn=with_bn)
|
with_bn=with_bn)
|
||||||
self.inplanes = planes
|
self.inplanes = planes
|
||||||
layer_name = 'layer{}'.format(i + 1)
|
layer_name = 'layer{}'.format(i + 1)
|
||||||
self.add_module(layer_name, vgg_layer)
|
self.add_module(layer_name, vgg_layer)
|
||||||
|
@ -118,9 +113,7 @@ class VGG(nn.Module):
|
||||||
for m in self.modules():
|
for m in self.modules():
|
||||||
if isinstance(m, nn.Conv2d):
|
if isinstance(m, nn.Conv2d):
|
||||||
nn.init.kaiming_normal_(
|
nn.init.kaiming_normal_(
|
||||||
m.weight,
|
m.weight, mode='fan_out', nonlinearity='relu')
|
||||||
mode='fan_out',
|
|
||||||
nonlinearity='relu')
|
|
||||||
if m.bias is not None:
|
if m.bias is not None:
|
||||||
nn.init.constant_(m.bias, 0)
|
nn.init.constant_(m.bias, 0)
|
||||||
elif isinstance(m, nn.BatchNorm2d):
|
elif isinstance(m, nn.BatchNorm2d):
|
||||||
|
|
Loading…
Reference in New Issue