mirror of https://github.com/open-mmlab/mmcv.git
[Fix] Create Tensor with new_* method to support amp (#2389)
parent
b622fb2e29
commit
6254ebef8d
|
@ -235,9 +235,9 @@ def box2corners(box: Tensor) -> Tensor:
|
|||
"""
|
||||
B = box.size()[0]
|
||||
x, y, w, h, alpha = box.split([1, 1, 1, 1, 1], dim=-1)
|
||||
x4 = torch.FloatTensor([0.5, -0.5, -0.5, 0.5]).to(box.device)
|
||||
x4 = box.new_tensor([0.5, -0.5, -0.5, 0.5]).to(box.device)
|
||||
x4 = x4 * w # (B, N, 4)
|
||||
y4 = torch.FloatTensor([0.5, 0.5, -0.5, -0.5]).to(box.device)
|
||||
y4 = box.new_tensor([0.5, 0.5, -0.5, -0.5]).to(box.device)
|
||||
y4 = y4 * h # (B, N, 4)
|
||||
corners = torch.stack([x4, y4], dim=-1) # (B, N, 4, 2)
|
||||
sin = torch.sin(alpha)
|
||||
|
|
|
@ -233,7 +233,7 @@ class GroupingOperation(Function):
|
|||
else:
|
||||
B, nfeatures, nsample = indices.size()
|
||||
_, C, N = features.size()
|
||||
output = torch.cuda.FloatTensor(B, C, nfeatures, nsample)
|
||||
output = features.new_zeros(B, C, nfeatures, nsample)
|
||||
|
||||
ext_module.group_points_forward(
|
||||
features,
|
||||
|
@ -262,7 +262,7 @@ class GroupingOperation(Function):
|
|||
idx, N = ctx.for_backwards
|
||||
|
||||
B, C, npoint, nsample = grad_out.size()
|
||||
grad_features = torch.cuda.FloatTensor(B, C, N).zero_()
|
||||
grad_features = grad_out.new_zeros(B, C, N)
|
||||
|
||||
grad_out_data = grad_out.data.contiguous()
|
||||
ext_module.group_points_backward(
|
||||
|
@ -279,7 +279,7 @@ class GroupingOperation(Function):
|
|||
B, N, idx, features_batch_cnt, idx_batch_cnt = ctx.for_backwards
|
||||
|
||||
M, C, nsample = grad_out.size()
|
||||
grad_features = torch.cuda.FloatTensor(N, C).zero_()
|
||||
grad_features = grad_out.new_zeros(N, C)
|
||||
|
||||
grad_out_data = grad_out.data.contiguous()
|
||||
ext_module.stack_group_points_backward(
|
||||
|
|
|
@ -38,7 +38,7 @@ class ThreeInterpolate(Function):
|
|||
B, c, m = features.size()
|
||||
n = indices.size(1)
|
||||
ctx.three_interpolate_for_backward = (indices, weight, m)
|
||||
output = torch.cuda.FloatTensor(B, c, n)
|
||||
output = features.new_empty(B, c, n)
|
||||
|
||||
ext_module.three_interpolate_forward(
|
||||
features, indices, weight, output, b=B, c=c, m=m, n=n)
|
||||
|
@ -58,7 +58,7 @@ class ThreeInterpolate(Function):
|
|||
idx, weight, m = ctx.three_interpolate_for_backward
|
||||
B, c, n = grad_out.size()
|
||||
|
||||
grad_features = torch.cuda.FloatTensor(B, c, m).zero_()
|
||||
grad_features = grad_out.new_zeros(B, c, m)
|
||||
grad_out_data = grad_out.data.contiguous()
|
||||
|
||||
ext_module.three_interpolate_backward(
|
||||
|
|
|
@ -7,7 +7,8 @@ from mmcv.ops import grouping_operation
|
|||
|
||||
@pytest.mark.skipif(
|
||||
not torch.cuda.is_available(), reason='requires CUDA support')
|
||||
def test_grouping_points():
|
||||
@pytest.mark.parametrize('dtype', [torch.half, torch.float, torch.double])
|
||||
def test_grouping_points(dtype):
|
||||
idx = torch.tensor([[[0, 0, 0], [3, 3, 3], [8, 8, 8], [0, 0, 0], [0, 0, 0],
|
||||
[0, 0, 0]],
|
||||
[[0, 0, 0], [6, 6, 6], [9, 9, 9], [0, 0, 0], [0, 0, 0],
|
||||
|
@ -35,51 +36,37 @@ def test_grouping_points():
|
|||
[
|
||||
-0.6646, -0.6870, -0.1125, -0.2224, -0.3445,
|
||||
-1.4049, 0.4990, -0.7037, -0.9924, 0.0386
|
||||
]]]).cuda()
|
||||
]]],
|
||||
dtype=dtype).cuda()
|
||||
|
||||
output = grouping_operation(features, idx)
|
||||
expected_output = torch.tensor([[[[0.5798, 0.5798, 0.5798],
|
||||
[-1.3311, -1.3311, -1.3311],
|
||||
[0.9268, 0.9268, 0.9268],
|
||||
[0.5798, 0.5798, 0.5798],
|
||||
[0.5798, 0.5798, 0.5798],
|
||||
[0.5798, 0.5798, 0.5798]],
|
||||
[[5.4247, 5.4247, 5.4247],
|
||||
[1.4740, 1.4740, 1.4740],
|
||||
[2.1581, 2.1581, 2.1581],
|
||||
[5.4247, 5.4247, 5.4247],
|
||||
[5.4247, 5.4247, 5.4247],
|
||||
[5.4247, 5.4247, 5.4247]],
|
||||
[[-1.6266, -1.6266, -1.6266],
|
||||
[-1.6931, -1.6931, -1.6931],
|
||||
[-1.6786, -1.6786, -1.6786],
|
||||
[-1.6266, -1.6266, -1.6266],
|
||||
[-1.6266, -1.6266, -1.6266],
|
||||
[-1.6266, -1.6266, -1.6266]]],
|
||||
[[[-0.0380, -0.0380, -0.0380],
|
||||
[-0.3693, -0.3693, -0.3693],
|
||||
[-1.8527, -1.8527, -1.8527],
|
||||
[-0.0380, -0.0380, -0.0380],
|
||||
[-0.0380, -0.0380, -0.0380],
|
||||
[-0.0380, -0.0380, -0.0380]],
|
||||
[[1.1773, 1.1773, 1.1773],
|
||||
[6.0865, 6.0865, 6.0865],
|
||||
[2.8229, 2.8229, 2.8229],
|
||||
[1.1773, 1.1773, 1.1773],
|
||||
[1.1773, 1.1773, 1.1773],
|
||||
[1.1773, 1.1773, 1.1773]],
|
||||
[[-0.6646, -0.6646, -0.6646],
|
||||
[0.4990, 0.4990, 0.4990],
|
||||
[0.0386, 0.0386, 0.0386],
|
||||
[-0.6646, -0.6646, -0.6646],
|
||||
[-0.6646, -0.6646, -0.6646],
|
||||
[-0.6646, -0.6646, -0.6646]]]]).cuda()
|
||||
expected_output = torch.tensor(
|
||||
[[[[0.5798, 0.5798, 0.5798], [-1.3311, -1.3311, -1.3311],
|
||||
[0.9268, 0.9268, 0.9268], [0.5798, 0.5798, 0.5798],
|
||||
[0.5798, 0.5798, 0.5798], [0.5798, 0.5798, 0.5798]],
|
||||
[[5.4247, 5.4247, 5.4247], [1.4740, 1.4740, 1.4740],
|
||||
[2.1581, 2.1581, 2.1581], [5.4247, 5.4247, 5.4247],
|
||||
[5.4247, 5.4247, 5.4247], [5.4247, 5.4247, 5.4247]],
|
||||
[[-1.6266, -1.6266, -1.6266], [-1.6931, -1.6931, -1.6931],
|
||||
[-1.6786, -1.6786, -1.6786], [-1.6266, -1.6266, -1.6266],
|
||||
[-1.6266, -1.6266, -1.6266], [-1.6266, -1.6266, -1.6266]]],
|
||||
[[[-0.0380, -0.0380, -0.0380], [-0.3693, -0.3693, -0.3693],
|
||||
[-1.8527, -1.8527, -1.8527], [-0.0380, -0.0380, -0.0380],
|
||||
[-0.0380, -0.0380, -0.0380], [-0.0380, -0.0380, -0.0380]],
|
||||
[[1.1773, 1.1773, 1.1773], [6.0865, 6.0865, 6.0865],
|
||||
[2.8229, 2.8229, 2.8229], [1.1773, 1.1773, 1.1773],
|
||||
[1.1773, 1.1773, 1.1773], [1.1773, 1.1773, 1.1773]],
|
||||
[[-0.6646, -0.6646, -0.6646], [0.4990, 0.4990, 0.4990],
|
||||
[0.0386, 0.0386, 0.0386], [-0.6646, -0.6646, -0.6646],
|
||||
[-0.6646, -0.6646, -0.6646], [-0.6646, -0.6646, -0.6646]]]],
|
||||
dtype=dtype).cuda()
|
||||
assert torch.allclose(output, expected_output)
|
||||
|
||||
|
||||
@pytest.mark.skipif(
|
||||
not torch.cuda.is_available(), reason='requires CUDA support')
|
||||
def test_stack_grouping_points():
|
||||
@pytest.mark.parametrize('dtype', [torch.half, torch.float, torch.double])
|
||||
def test_stack_grouping_points(dtype):
|
||||
idx = torch.tensor([[0, 0, 0], [3, 3, 3], [8, 8, 8], [1, 1, 1], [0, 0, 0],
|
||||
[2, 2, 2], [0, 0, 0], [6, 6, 6], [9, 9, 9], [0, 0, 0],
|
||||
[1, 1, 1], [0, 0, 0]]).int().cuda()
|
||||
|
@ -106,130 +93,72 @@ def test_stack_grouping_points():
|
|||
[
|
||||
-0.6646, -0.6870, -0.1125, -0.2224, -0.3445,
|
||||
-1.4049, 0.4990, -0.7037, -0.9924, 0.0386
|
||||
]]).float().cuda()
|
||||
]],
|
||||
dtype=dtype).cuda()
|
||||
features_batch_cnt = torch.tensor([3, 3]).int().cuda()
|
||||
indices_batch_cnt = torch.tensor([6, 6]).int().cuda()
|
||||
output = grouping_operation(features, idx, features_batch_cnt,
|
||||
indices_batch_cnt)
|
||||
expected_output = torch.Tensor([[[0.5798, 0.5798, 0.5798],
|
||||
[-0.7981, -0.7981, -0.7981],
|
||||
[-0.9280, -0.9280, -0.9280],
|
||||
[-1.3311, -1.3311, -1.3311],
|
||||
[1.3687, 1.3687, 1.3687],
|
||||
[0.9277, 0.9277, 0.9277],
|
||||
[-0.4164, -0.4164, -0.4164],
|
||||
[-1.8274, -1.8274, -1.8274],
|
||||
[0.9268, 0.9268, 0.9268],
|
||||
[0.8414, 0.8414, 0.8414]],
|
||||
[[0.0000, 0.0000, 0.0000],
|
||||
[0.0000, 0.0000, 0.0000],
|
||||
[0.0000, 0.0000, 0.0000],
|
||||
[0.0000, 0.0000, 0.0000],
|
||||
[0.0000, 0.0000, 0.0000],
|
||||
[0.0000, 0.0000, 0.0000],
|
||||
[0.0000, 0.0000, 0.0000],
|
||||
[0.0000, 0.0000, 0.0000],
|
||||
[0.0000, 0.0000, 0.0000],
|
||||
[0.0000, 0.0000, 0.0000]],
|
||||
[[0.0000, 0.0000, 0.0000],
|
||||
[0.0000, 0.0000, 0.0000],
|
||||
[0.0000, 0.0000, 0.0000],
|
||||
[0.0000, 0.0000, 0.0000],
|
||||
[0.0000, 0.0000, 0.0000],
|
||||
[0.0000, 0.0000, 0.0000],
|
||||
[0.0000, 0.0000, 0.0000],
|
||||
[0.0000, 0.0000, 0.0000],
|
||||
[0.0000, 0.0000, 0.0000],
|
||||
[0.0000, 0.0000, 0.0000]],
|
||||
[[5.4247, 5.4247, 5.4247],
|
||||
[1.5113, 1.5113, 1.5113],
|
||||
[2.3944, 2.3944, 2.3944],
|
||||
[1.4740, 1.4740, 1.4740],
|
||||
[5.0300, 5.0300, 5.0300],
|
||||
[5.1030, 5.1030, 5.1030],
|
||||
[1.9360, 1.9360, 1.9360],
|
||||
[2.1939, 2.1939, 2.1939],
|
||||
[2.1581, 2.1581, 2.1581],
|
||||
[3.4666, 3.4666, 3.4666]],
|
||||
[[0.5798, 0.5798, 0.5798],
|
||||
[-0.7981, -0.7981, -0.7981],
|
||||
[-0.9280, -0.9280, -0.9280],
|
||||
[-1.3311, -1.3311, -1.3311],
|
||||
[1.3687, 1.3687, 1.3687],
|
||||
[0.9277, 0.9277, 0.9277],
|
||||
[-0.4164, -0.4164, -0.4164],
|
||||
[-1.8274, -1.8274, -1.8274],
|
||||
[0.9268, 0.9268, 0.9268],
|
||||
[0.8414, 0.8414, 0.8414]],
|
||||
[[-1.6266, -1.6266, -1.6266],
|
||||
[-1.0281, -1.0281, -1.0281],
|
||||
[-1.0393, -1.0393, -1.0393],
|
||||
[-1.6931, -1.6931, -1.6931],
|
||||
[-1.3982, -1.3982, -1.3982],
|
||||
[-0.5732, -0.5732, -0.5732],
|
||||
[-1.0830, -1.0830, -1.0830],
|
||||
[-1.7561, -1.7561, -1.7561],
|
||||
[-1.6786, -1.6786, -1.6786],
|
||||
[-1.6967, -1.6967, -1.6967]],
|
||||
[[-0.0380, -0.0380, -0.0380],
|
||||
[-0.1880, -0.1880, -0.1880],
|
||||
[-1.5724, -1.5724, -1.5724],
|
||||
[0.6905, 0.6905, 0.6905],
|
||||
[-0.3190, -0.3190, -0.3190],
|
||||
[0.7798, 0.7798, 0.7798],
|
||||
[-0.3693, -0.3693, -0.3693],
|
||||
[-0.9457, -0.9457, -0.9457],
|
||||
[-0.2942, -0.2942, -0.2942],
|
||||
[-1.8527, -1.8527, -1.8527]],
|
||||
[[0.0000, 0.0000, 0.0000],
|
||||
[0.0000, 0.0000, 0.0000],
|
||||
[0.0000, 0.0000, 0.0000],
|
||||
[0.0000, 0.0000, 0.0000],
|
||||
[0.0000, 0.0000, 0.0000],
|
||||
[0.0000, 0.0000, 0.0000],
|
||||
[0.0000, 0.0000, 0.0000],
|
||||
[0.0000, 0.0000, 0.0000],
|
||||
[0.0000, 0.0000, 0.0000],
|
||||
[0.0000, 0.0000, 0.0000]],
|
||||
[[0.0000, 0.0000, 0.0000],
|
||||
[0.0000, 0.0000, 0.0000],
|
||||
[0.0000, 0.0000, 0.0000],
|
||||
[0.0000, 0.0000, 0.0000],
|
||||
[0.0000, 0.0000, 0.0000],
|
||||
[0.0000, 0.0000, 0.0000],
|
||||
[0.0000, 0.0000, 0.0000],
|
||||
[0.0000, 0.0000, 0.0000],
|
||||
[0.0000, 0.0000, 0.0000],
|
||||
[0.0000, 0.0000, 0.0000]],
|
||||
[[-0.0380, -0.0380, -0.0380],
|
||||
[-0.1880, -0.1880, -0.1880],
|
||||
[-1.5724, -1.5724, -1.5724],
|
||||
[0.6905, 0.6905, 0.6905],
|
||||
[-0.3190, -0.3190, -0.3190],
|
||||
[0.7798, 0.7798, 0.7798],
|
||||
[-0.3693, -0.3693, -0.3693],
|
||||
[-0.9457, -0.9457, -0.9457],
|
||||
[-0.2942, -0.2942, -0.2942],
|
||||
[-1.8527, -1.8527, -1.8527]],
|
||||
[[1.1773, 1.1773, 1.1773],
|
||||
[1.5009, 1.5009, 1.5009],
|
||||
[2.6399, 2.6399, 2.6399],
|
||||
[5.9242, 5.9242, 5.9242],
|
||||
[1.0962, 1.0962, 1.0962],
|
||||
[2.7346, 2.7346, 2.7346],
|
||||
[6.0865, 6.0865, 6.0865],
|
||||
[1.5555, 1.5555, 1.5555],
|
||||
[4.3303, 4.3303, 4.3303],
|
||||
[2.8229, 2.8229, 2.8229]],
|
||||
[[-0.0380, -0.0380, -0.0380],
|
||||
[-0.1880, -0.1880, -0.1880],
|
||||
[-1.5724, -1.5724, -1.5724],
|
||||
[0.6905, 0.6905, 0.6905],
|
||||
[-0.3190, -0.3190, -0.3190],
|
||||
[0.7798, 0.7798, 0.7798],
|
||||
[-0.3693, -0.3693, -0.3693],
|
||||
[-0.9457, -0.9457, -0.9457],
|
||||
[-0.2942, -0.2942, -0.2942],
|
||||
[-1.8527, -1.8527,
|
||||
-1.8527]]]).cuda().float()
|
||||
expected_output = torch.tensor(
|
||||
[[[0.5798, 0.5798, 0.5798], [-0.7981, -0.7981, -0.7981],
|
||||
[-0.9280, -0.9280, -0.9280], [-1.3311, -1.3311, -1.3311],
|
||||
[1.3687, 1.3687, 1.3687], [0.9277, 0.9277, 0.9277],
|
||||
[-0.4164, -0.4164, -0.4164], [-1.8274, -1.8274, -1.8274],
|
||||
[0.9268, 0.9268, 0.9268], [0.8414, 0.8414, 0.8414]],
|
||||
[[0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000],
|
||||
[0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000],
|
||||
[0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000],
|
||||
[0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000],
|
||||
[0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000]],
|
||||
[[0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000],
|
||||
[0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000],
|
||||
[0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000],
|
||||
[0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000],
|
||||
[0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000]],
|
||||
[[5.4247, 5.4247, 5.4247], [1.5113, 1.5113, 1.5113],
|
||||
[2.3944, 2.3944, 2.3944], [1.4740, 1.4740, 1.4740],
|
||||
[5.0300, 5.0300, 5.0300], [5.1030, 5.1030, 5.1030],
|
||||
[1.9360, 1.9360, 1.9360], [2.1939, 2.1939, 2.1939],
|
||||
[2.1581, 2.1581, 2.1581], [3.4666, 3.4666, 3.4666]],
|
||||
[[0.5798, 0.5798, 0.5798], [-0.7981, -0.7981, -0.7981],
|
||||
[-0.9280, -0.9280, -0.9280], [-1.3311, -1.3311, -1.3311],
|
||||
[1.3687, 1.3687, 1.3687], [0.9277, 0.9277, 0.9277],
|
||||
[-0.4164, -0.4164, -0.4164], [-1.8274, -1.8274, -1.8274],
|
||||
[0.9268, 0.9268, 0.9268], [0.8414, 0.8414, 0.8414]],
|
||||
[[-1.6266, -1.6266, -1.6266], [-1.0281, -1.0281, -1.0281],
|
||||
[-1.0393, -1.0393, -1.0393], [-1.6931, -1.6931, -1.6931],
|
||||
[-1.3982, -1.3982, -1.3982], [-0.5732, -0.5732, -0.5732],
|
||||
[-1.0830, -1.0830, -1.0830], [-1.7561, -1.7561, -1.7561],
|
||||
[-1.6786, -1.6786, -1.6786], [-1.6967, -1.6967, -1.6967]],
|
||||
[[-0.0380, -0.0380, -0.0380], [-0.1880, -0.1880, -0.1880],
|
||||
[-1.5724, -1.5724, -1.5724], [0.6905, 0.6905, 0.6905],
|
||||
[-0.3190, -0.3190, -0.3190], [0.7798, 0.7798, 0.7798],
|
||||
[-0.3693, -0.3693, -0.3693], [-0.9457, -0.9457, -0.9457],
|
||||
[-0.2942, -0.2942, -0.2942], [-1.8527, -1.8527, -1.8527]],
|
||||
[[0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000],
|
||||
[0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000],
|
||||
[0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000],
|
||||
[0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000],
|
||||
[0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000]],
|
||||
[[0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000],
|
||||
[0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000],
|
||||
[0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000],
|
||||
[0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000],
|
||||
[0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000]],
|
||||
[[-0.0380, -0.0380, -0.0380], [-0.1880, -0.1880, -0.1880],
|
||||
[-1.5724, -1.5724, -1.5724], [0.6905, 0.6905, 0.6905],
|
||||
[-0.3190, -0.3190, -0.3190], [0.7798, 0.7798, 0.7798],
|
||||
[-0.3693, -0.3693, -0.3693], [-0.9457, -0.9457, -0.9457],
|
||||
[-0.2942, -0.2942, -0.2942], [-1.8527, -1.8527, -1.8527]],
|
||||
[[1.1773, 1.1773, 1.1773], [1.5009, 1.5009, 1.5009],
|
||||
[2.6399, 2.6399, 2.6399], [5.9242, 5.9242, 5.9242],
|
||||
[1.0962, 1.0962, 1.0962], [2.7346, 2.7346, 2.7346],
|
||||
[6.0865, 6.0865, 6.0865], [1.5555, 1.5555, 1.5555],
|
||||
[4.3303, 4.3303, 4.3303], [2.8229, 2.8229, 2.8229]],
|
||||
[[-0.0380, -0.0380, -0.0380], [-0.1880, -0.1880, -0.1880],
|
||||
[-1.5724, -1.5724, -1.5724], [0.6905, 0.6905, 0.6905],
|
||||
[-0.3190, -0.3190, -0.3190], [0.7798, 0.7798, 0.7798],
|
||||
[-0.3693, -0.3693, -0.3693], [-0.9457, -0.9457, -0.9457],
|
||||
[-0.2942, -0.2942, -0.2942], [-1.8527, -1.8527, -1.8527]]],
|
||||
dtype=dtype).cuda()
|
||||
assert torch.allclose(output, expected_output)
|
||||
|
|
|
@ -7,19 +7,20 @@ from mmcv.ops import three_interpolate
|
|||
|
||||
@pytest.mark.skipif(
|
||||
not torch.cuda.is_available(), reason='requires CUDA support')
|
||||
def test_three_interpolate():
|
||||
features = torch.tensor([[[2.4350, 4.7516, 4.4995, 2.4350, 2.4350, 2.4350],
|
||||
[3.1236, 2.6278, 3.0447, 3.1236, 3.1236, 3.1236],
|
||||
[2.6732, 2.8677, 2.6436, 2.6732, 2.6732, 2.6732],
|
||||
[0.0124, 7.0150, 7.0199, 0.0124, 0.0124, 0.0124],
|
||||
[0.3207, 0.0000, 0.3411, 0.3207, 0.3207,
|
||||
0.3207]],
|
||||
[[0.0000, 0.9544, 2.4532, 0.0000, 0.0000, 0.0000],
|
||||
[0.5346, 1.9176, 1.4715, 0.5346, 0.5346, 0.5346],
|
||||
[0.0000, 0.2744, 2.0842, 0.0000, 0.0000, 0.0000],
|
||||
[0.3414, 1.5063, 1.6209, 0.3414, 0.3414, 0.3414],
|
||||
[0.5814, 0.0103, 0.0000, 0.5814, 0.5814,
|
||||
0.5814]]]).cuda()
|
||||
@pytest.mark.parametrize('dtype', [torch.half, torch.float, torch.double])
|
||||
def test_three_interpolate(dtype):
|
||||
features = torch.tensor(
|
||||
[[[2.4350, 4.7516, 4.4995, 2.4350, 2.4350, 2.4350],
|
||||
[3.1236, 2.6278, 3.0447, 3.1236, 3.1236, 3.1236],
|
||||
[2.6732, 2.8677, 2.6436, 2.6732, 2.6732, 2.6732],
|
||||
[0.0124, 7.0150, 7.0199, 0.0124, 0.0124, 0.0124],
|
||||
[0.3207, 0.0000, 0.3411, 0.3207, 0.3207, 0.3207]],
|
||||
[[0.0000, 0.9544, 2.4532, 0.0000, 0.0000, 0.0000],
|
||||
[0.5346, 1.9176, 1.4715, 0.5346, 0.5346, 0.5346],
|
||||
[0.0000, 0.2744, 2.0842, 0.0000, 0.0000, 0.0000],
|
||||
[0.3414, 1.5063, 1.6209, 0.3414, 0.3414, 0.3414],
|
||||
[0.5814, 0.0103, 0.0000, 0.5814, 0.5814, 0.5814]]],
|
||||
dtype=dtype).cuda()
|
||||
|
||||
idx = torch.tensor([[[0, 1, 2], [2, 3, 4], [2, 3, 4], [0, 1, 2], [0, 1, 2],
|
||||
[0, 1, 3]],
|
||||
|
@ -37,7 +38,8 @@ def test_three_interpolate():
|
|||
[1.0000e+00, 1.7148e-08, 1.4070e-08],
|
||||
[3.3333e-01, 3.3333e-01, 3.3333e-01],
|
||||
[3.3333e-01, 3.3333e-01, 3.3333e-01],
|
||||
[3.3333e-01, 3.3333e-01, 3.3333e-01]]]).cuda()
|
||||
[3.3333e-01, 3.3333e-01, 3.3333e-01]]],
|
||||
dtype=dtype).cuda()
|
||||
|
||||
output = three_interpolate(features, idx, weight)
|
||||
expected_output = torch.tensor([[[
|
||||
|
@ -70,6 +72,7 @@ def test_three_interpolate():
|
|||
[
|
||||
3.8760e-01, 1.0300e-02, 8.3569e-09,
|
||||
3.8760e-01, 3.8760e-01, 1.9723e-01
|
||||
]]]).cuda()
|
||||
]]],
|
||||
dtype=dtype).cuda()
|
||||
|
||||
assert torch.allclose(output, expected_output, 1e-4)
|
||||
assert torch.allclose(output, expected_output, 1e-3, 1e-4)
|
||||
|
|
Loading…
Reference in New Issue