add alexnet & vgg

pull/16/head
yl-1993 2018-10-09 21:14:09 +08:00
parent 867d5a5003
commit 64959bd772
3 changed files with 231 additions and 1 deletions

View File

@ -1,3 +1,7 @@
from .alexnet import AlexNet
from .vgg import VGG, make_vgg_layer
from .resnet import ResNet, make_res_layer from .resnet import ResNet, make_res_layer
__all__ = ['ResNet', 'make_res_layer'] __all__ = ['AlexNet',
'VGG', 'make_vgg_layer',
'ResNet', 'make_res_layer']

View File

@ -0,0 +1,64 @@
import logging
import math
import torch.nn as nn
from ..runner import load_checkpoint
class AlexNet(nn.Module):
"""AlexNet backbone.
Args:
num_classes (int): number of classes for classification.
"""
def __init__(self,
num_classes=-1):
super(AlexNet, self).__init__()
self.num_classes = num_classes
self.features = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(64, 192, kernel_size=5, padding=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(192, 384, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(384, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
)
if self.num_classes > 0:
self.classifier = nn.Sequential(
nn.Dropout(),
nn.Linear(256 * 6 * 6, 4096),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(4096, 4096),
nn.ReLU(inplace=True), # caffe has dropout
nn.Linear(4096, num_classes),
)
def init_weights(self, pretrained=None):
if isinstance(pretrained, str):
logger = logging.getLogger()
load_checkpoint(self, pretrained, strict=False, logger=logger)
elif pretrained is None:
# use default initializer
pass
else:
raise TypeError('pretrained must be a str or None')
def forward(self, x):
x = self.features(x)
if self.num_classes > 0:
x = x.view(x.size(0), 256 * 6 * 6)
x = self.classifier(x)
return x

162
mmcv/cnn/vgg.py 100644
View File

@ -0,0 +1,162 @@
import logging
import math
import torch.nn as nn
from ..runner import load_checkpoint
def conv3x3(in_planes, out_planes, dilation=1, bias=False):
"3x3 convolution with padding"
return nn.Conv2d(
in_planes,
out_planes,
kernel_size=3,
padding=dilation,
dilation=dilation,
bias=bias)
def make_vgg_layer(inplanes,
planes,
num_blocks,
dilation=1,
with_bn=False):
layers = []
for _ in range(num_blocks):
layers.append(
conv3x3(inplanes, planes, dilation, not with_bn))
if with_bn:
layers.append(nn.BatchNorm2d(planes))
layers.append(nn.ReLU(inplace=True))
inplanes = planes
layers.append(nn.MaxPool2d(kernel_size=2, stride=2))
return nn.Sequential(*layers)
class VGG(nn.Module):
"""VGG backbone.
Args:
depth (int): Depth of vgg, from {11, 13, 16, 19}.
with_bn (bool): Use BatchNorm or not.
num_classes (int): number of classes for classification.
num_stages (int): VGG stages, normally 5.
dilations (Sequence[int]): Dilation of each stage.
out_indices (Sequence[int]): Output from which stages.
frozen_stages (int): Stages to be frozen (all param fixed). -1 means
not freezing any parameters.
bn_eval (bool): Whether to set BN layers as eval mode, namely, freeze
running stats (mean and var).
bn_frozen (bool): Whether to freeze weight and bias of BN layers.
"""
arch_settings = {
11: (1, 1, 2, 2, 2),
13: (2, 2, 2, 2, 2),
16: (2, 2, 3, 3, 3),
19: (2, 2, 4, 4, 4)
}
def __init__(self,
depth,
with_bn=False,
num_classes=-1,
num_stages=5,
dilations=(1, 1, 1, 1, 1),
out_indices=(0, 1, 2, 3, 4),
frozen_stages=-1,
bn_eval=True,
bn_frozen=False):
super(VGG, self).__init__()
if depth not in self.arch_settings:
raise KeyError('invalid depth {} for vgg'.format(depth))
assert num_stages >= 1 and num_stages <= 5
stage_blocks = self.arch_settings[depth]
stage_blocks = stage_blocks[:num_stages]
assert len(dilations) == num_stages
assert max(out_indices) < num_stages
self.num_classes = num_classes
self.out_indices = out_indices
self.frozen_stages = frozen_stages
self.bn_eval = bn_eval
self.bn_frozen = bn_frozen
self.inplanes = 3
self.vgg_layers = []
for i, num_blocks in enumerate(stage_blocks):
dilation = dilations[i]
planes = 64 * 2**i if i < 4 else 512
vgg_layer = make_vgg_layer(
self.inplanes,
planes,
num_blocks,
dilation=dilation,
with_bn=with_bn)
self.inplanes = planes
layer_name = 'layer{}'.format(i + 1)
self.add_module(layer_name, vgg_layer)
self.vgg_layers.append(layer_name)
if self.num_classes > 0:
self.classifier = nn.Sequential(
nn.Linear(512 * 7 * 7, 4096),
nn.ReLU(True),
nn.Dropout(),
nn.Linear(4096, 4096),
nn.ReLU(True),
nn.Dropout(),
nn.Linear(4096, num_classes),
)
def init_weights(self, pretrained=None):
if isinstance(pretrained, str):
logger = logging.getLogger()
load_checkpoint(self, pretrained, strict=False, logger=logger)
elif pretrained is None:
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.constant_(m.bias, 0)
else:
raise TypeError('pretrained must be a str or None')
def forward(self, x):
for i, layer_name in enumerate(self.vgg_layers):
vgg_layer = getattr(self, layer_name)
x = vgg_layer(x)
if i in self.out_indices:
outs.append(x)
if self.num_classes > 0:
x = x.view(x.size(0), -1)
x = self.classifier(x)
outs.append(x)
if len(outs) == 1:
return outs[0]
else:
return tuple(outs)
def train(self, mode=True):
super(VGG, self).train(mode)
if self.bn_eval:
for m in self.modules():
if isinstance(m, nn.BatchNorm2d):
m.eval()
if self.bn_frozen:
for params in m.parameters():
params.requires_grad = False
if mode and self.frozen_stages >= 0:
for i in range(1, self.frozen_stages + 1):
mod = getattr(self, 'layer{}'.format(i))
mod.eval()
for param in mod.parameters():
param.requires_grad = False