[Feature]: Support tensor2grayimgs (#1595)

* support tensor2grayimgs

* give default mean and std according to the input channel

* update docstring

* update

* fix bug
pull/1599/head
Hongbin Sun 2021-12-22 19:49:50 +08:00 committed by GitHub
parent ac92a1116f
commit 690a77fa6f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 39 additions and 9 deletions

View File

@ -9,18 +9,21 @@ except ImportError:
torch = None
def tensor2imgs(tensor, mean=(0, 0, 0), std=(1, 1, 1), to_rgb=True):
"""Convert tensor to 3-channel images.
def tensor2imgs(tensor, mean=None, std=None, to_rgb=True):
"""Convert tensor to 3-channel images or 1-channel gray images.
Args:
tensor (torch.Tensor): Tensor that contains multiple images, shape (
N, C, H, W).
mean (tuple[float], optional): Mean of images. Defaults to (0, 0, 0).
std (tuple[float], optional): Standard deviation of images.
Defaults to (1, 1, 1).
N, C, H, W). :math:`C` can be either 3 or 1.
mean (tuple[float], optional): Mean of images. If None,
(0, 0, 0) will be used for tensor with 3-channel,
while (0, ) for tensor with 1-channel. Defaults to None.
std (tuple[float], optional): Standard deviation of images. If None,
(1, 1, 1) will be used for tensor with 3-channel,
while (1, ) for tensor with 1-channel. Defaults to None.
to_rgb (bool, optional): Whether the tensor was converted to RGB
format in the first place. If so, convert it back to BGR.
Defaults to True.
For the tensor with 1 channel, it must be False. Defaults to True.
Returns:
list[np.ndarray]: A list that contains multiple images.
@ -29,8 +32,14 @@ def tensor2imgs(tensor, mean=(0, 0, 0), std=(1, 1, 1), to_rgb=True):
if torch is None:
raise RuntimeError('pytorch is not installed')
assert torch.is_tensor(tensor) and tensor.ndim == 4
assert len(mean) == 3
assert len(std) == 3
channels = tensor.size(1)
assert channels in [1, 3]
if mean is None:
mean = (0, ) * channels
if std is None:
std = (1, ) * channels
assert (channels == len(mean) == len(std) == 3) or \
(channels == len(mean) == len(std) == 1 and not to_rgb)
num_imgs = tensor.size(0)
mean = np.array(mean, dtype=np.float32)

View File

@ -24,15 +24,29 @@ def test_tensor2imgs():
tensor = torch.randn(2, 3, 3)
mmcv.tensor2imgs(tensor)
# test tensor dim-1
with pytest.raises(AssertionError):
tensor = torch.randn(2, 4, 3, 3)
mmcv.tensor2imgs(tensor)
# test mean length
with pytest.raises(AssertionError):
tensor = torch.randn(2, 3, 5, 5)
mmcv.tensor2imgs(tensor, mean=(1, ))
tensor = torch.randn(2, 1, 5, 5)
mmcv.tensor2imgs(tensor, mean=(0, 0, 0))
# test std length
with pytest.raises(AssertionError):
tensor = torch.randn(2, 3, 5, 5)
mmcv.tensor2imgs(tensor, std=(1, ))
tensor = torch.randn(2, 1, 5, 5)
mmcv.tensor2imgs(tensor, std=(1, 1, 1))
# test to_rgb
with pytest.raises(AssertionError):
tensor = torch.randn(2, 1, 5, 5)
mmcv.tensor2imgs(tensor, mean=(0, ), std=(1, ), to_rgb=True)
# test rgb=True
tensor = torch.randn(2, 3, 5, 5)
@ -50,3 +64,10 @@ def test_tensor2imgs():
outputs = mmcv.tensor2imgs(tensor, to_rgb=False)
for gt, output in zip(gts, outputs):
assert_array_equal(gt, output)
# test tensor channel 1 and rgb=False
tensor = torch.randn(2, 1, 5, 5)
gts = [t.squeeze(0).cpu().numpy().astype(np.uint8) for t in tensor]
outputs = mmcv.tensor2imgs(tensor, to_rgb=False)
for gt, output in zip(gts, outputs):
assert_array_equal(gt, output)