[Fix] Revise unit test of correlation (#1368)

* [Fix] Revise unit test of correlation

* rename

* lint

* lint

* lint

* lint
pull/1372/head
Miao Zheng 2021-09-25 21:13:34 +08:00 committed by GitHub
parent 9d4571e3d0
commit 745aa7373e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 213 additions and 308 deletions

View File

@ -15,8 +15,9 @@
#include <cuda.h>
#include <cuda_runtime.h>
#include <torch/types.h>
#include <vector>
#include <iostream>
#include <vector>
using namespace torch;
@ -28,17 +29,10 @@ using namespace torch;
#define THREADS_BACKWARD 16
template <typename scalar_t>
__global__ void correlation_forward_cuda_kernel(const TensorAcc4R rInput1,
const TensorAcc4R rInput2,
TensorAcc5R output,
int kH, int kW,
int patchH, int patchW,
int padH, int padW,
int dilationH, int dilationW,
int dilation_patchH,
int dilation_patchW,
int dH, int dW)
{
__global__ void correlation_forward_cuda_kernel(
const TensorAcc4R rInput1, const TensorAcc4R rInput2, TensorAcc5R output,
int kH, int kW, int patchH, int patchW, int padH, int padW, int dilationH,
int dilationW, int dilation_patchH, int dilation_patchW, int dH, int dW) {
const int iH = rInput1.size(1);
const int iW = rInput1.size(2);
const int C = rInput1.size(3);
@ -56,42 +50,35 @@ __global__ void correlation_forward_cuda_kernel(const TensorAcc4R rInput1,
__shared__ scalar_t prod_sum[THREADS_FORWARD];
for (int ph = 0; ph < patchH; ++ph)
{
for (int ph = 0; ph < patchH; ++ph) {
int ph_dilated = ph * dilation_patchH - patchRadH;
for (int pw = 0; pw < patchW; ++pw)
{
for (int pw = 0; pw < patchW; ++pw) {
int pw_dilated = pw * dilation_patchW - patchRadW;
prod_sum[thread] = 0;
for (int i = 0; i < kH; ++i)
{
for (int i = 0; i < kH; ++i) {
int i1 = start_i + i * dilationH;
int i2 = i1 + ph_dilated;
if WITHIN_BOUNDS (i1, i2, iH, iH)
{
for (int j = 0; j < kW; ++j)
{
int j1 = start_j + j * dilationW;
int j2 = j1 + pw_dilated;
if WITHIN_BOUNDS (j1, j2, iW, iW)
{
for (int c = thread; c < C; c += THREADS_FORWARD)
{
scalar_t v1 = rInput1[n][i1][j1][c];
scalar_t v2 = rInput2[n][i2][j2][c];
prod_sum[thread] += v1 * v2;
}
if
WITHIN_BOUNDS(i1, i2, iH, iH) {
for (int j = 0; j < kW; ++j) {
int j1 = start_j + j * dilationW;
int j2 = j1 + pw_dilated;
if
WITHIN_BOUNDS(j1, j2, iW, iW) {
for (int c = thread; c < C; c += THREADS_FORWARD) {
scalar_t v1 = rInput1[n][i1][j1][c];
scalar_t v2 = rInput2[n][i2][j2][c];
prod_sum[thread] += v1 * v2;
}
}
}
}
}
}
// accumulate
__syncthreads();
if (thread == 0)
{
if (thread == 0) {
scalar_t reduce_sum = 0;
for (int index = 0; index < THREADS_FORWARD; ++index)
{
for (int index = 0; index < THREADS_FORWARD; ++index) {
reduce_sum += prod_sum[index];
}
output[n][ph][pw][h][w] = reduce_sum;
@ -101,18 +88,12 @@ __global__ void correlation_forward_cuda_kernel(const TensorAcc4R rInput1,
}
template <typename scalar_t>
__global__ void correlation_backward_cuda_kernel_input1(const TensorAcc5R grad_output,
const TensorAcc4R input2,
TensorAcc4R grad_input1,
const int kH, const int kW,
const int patchH, const int patchW,
const int padH, const int padW,
const int dilationH, const int dilationW,
const int dilation_patchH, const int dilation_patchW,
const int dH, const int dW,
const int batch)
{
__global__ void correlation_backward_cuda_kernel_input1(
const TensorAcc5R grad_output, const TensorAcc4R input2,
TensorAcc4R grad_input1, const int kH, const int kW, const int patchH,
const int patchW, const int padH, const int padW, const int dilationH,
const int dilationW, const int dilation_patchH, const int dilation_patchW,
const int dH, const int dW, const int batch) {
const int iH = input2.size(2);
const int iW = input2.size(3);
@ -137,29 +118,23 @@ __global__ void correlation_backward_cuda_kernel_input1(const TensorAcc5R grad_o
__shared__ scalar_t prod_sum[THREADS_BACKWARD][THREADS_BACKWARD];
prod_sum[ph_off][pw_off] = 0;
for (int ph = ph_off; ph < patchH; ph += THREADS_BACKWARD)
{
for (int ph = ph_off; ph < patchH; ph += THREADS_BACKWARD) {
int i1 = h + dilation_patchH * (ph - patchRadH);
for (int pw = pw_off; pw < patchW; pw += THREADS_BACKWARD)
{
for (int pw = pw_off; pw < patchW; pw += THREADS_BACKWARD) {
int j1 = w + dilation_patchW * (pw - patchRadW);
if (WITHIN_BOUNDS(i1, j1, iH, iW))
{
if (WITHIN_BOUNDS(i1, j1, iH, iW)) {
scalar_t val = input2[n][c][i1][j1];
for (int h_3 = h_2; h_3 > min_h; h_3 -= dilationH)
{
for (int h_3 = h_2; h_3 > min_h; h_3 -= dilationH) {
int i2 = (h_3) / dH;
if (i2 * dH != h_3)
continue;
for (int w_3 = w_2; w_3 > min_w; w_3 -= dilationW)
{
if (i2 * dH != h_3) continue;
for (int w_3 = w_2; w_3 > min_w; w_3 -= dilationW) {
int j2 = (w_3) / dW;
if (j2 * dW != w_3)
continue;
if WITHIN_BOUNDS (i2, j2, H, W)
{
prod_sum[ph_off][pw_off] += grad_output[n][ph][pw][i2][j2] * val;
}
if (j2 * dW != w_3) continue;
if
WITHIN_BOUNDS(i2, j2, H, W) {
prod_sum[ph_off][pw_off] +=
grad_output[n][ph][pw][i2][j2] * val;
}
}
}
}
@ -168,13 +143,10 @@ __global__ void correlation_backward_cuda_kernel_input1(const TensorAcc5R grad_o
__syncthreads();
if (ph_off == 0 && pw_off == 0)
{
if (ph_off == 0 && pw_off == 0) {
scalar_t reduce_sum = 0;
for (int ph = 0; ph < THREADS_BACKWARD; ++ph)
{
for (int pw = 0; pw < THREADS_BACKWARD; ++pw)
{
for (int ph = 0; ph < THREADS_BACKWARD; ++ph) {
for (int pw = 0; pw < THREADS_BACKWARD; ++pw) {
reduce_sum += prod_sum[ph][pw];
}
}
@ -183,17 +155,11 @@ __global__ void correlation_backward_cuda_kernel_input1(const TensorAcc5R grad_o
}
template <typename scalar_t>
__global__ void correlation_backward_cuda_kernel_input2(const TensorAcc5R grad_output,
const TensorAcc4R input1,
TensorAcc4R grad_input2,
int kH, int kW,
int patchH, int patchW,
int padH, int padW,
int dilationH, int dilationW,
int dilation_patchH, int dilation_patchW,
int dH, int dW,
int batch)
{
__global__ void correlation_backward_cuda_kernel_input2(
const TensorAcc5R grad_output, const TensorAcc4R input1,
TensorAcc4R grad_input2, int kH, int kW, int patchH, int patchW, int padH,
int padW, int dilationH, int dilationW, int dilation_patchH,
int dilation_patchW, int dH, int dW, int batch) {
const int iH = input1.size(2);
const int iW = input1.size(3);
@ -216,50 +182,42 @@ __global__ void correlation_backward_cuda_kernel_input2(const TensorAcc5R grad_o
__shared__ scalar_t prod_sum[THREADS_BACKWARD][THREADS_BACKWARD];
prod_sum[ph_off][pw_off] = 0;
for (int ph = ph_off; ph < patchH; ph += THREADS_BACKWARD)
{
for (int ph = ph_off; ph < patchH; ph += THREADS_BACKWARD) {
int i1 = h - dilation_patchH * (ph - patchRadH);
for (int pw = pw_off; pw < patchW; pw += THREADS_BACKWARD)
{
for (int pw = pw_off; pw < patchW; pw += THREADS_BACKWARD) {
int j1 = w - dilation_patchW * (pw - patchRadW);
if WITHIN_BOUNDS (i1, j1, iH, iW)
{
scalar_t val = input1[n][c][i1][j1];
if
WITHIN_BOUNDS(i1, j1, iH, iW) {
scalar_t val = input1[n][c][i1][j1];
const int h_2 = i1 + padH;
const int w_2 = j1 + padW;
const int min_h = h_2 - dilatedKH;
const int min_w = w_2 - dilatedKW;
const int h_2 = i1 + padH;
const int w_2 = j1 + padW;
const int min_h = h_2 - dilatedKH;
const int min_w = w_2 - dilatedKW;
for (int h_3 = h_2; h_3 > min_h; h_3 -= dilationH)
{
int i2 = (h_3) / dH;
if (i2 * dH != h_3)
continue;
for (int w_3 = w_2; w_3 > min_w; w_3 -= dilationW)
{
int j2 = (w_3) / dW;
if (j2 * dW != w_3)
continue;
if WITHIN_BOUNDS (i2, j2, H, W)
{
prod_sum[ph_off][pw_off] += grad_output[n][ph][pw][i2][j2] * val;
for (int h_3 = h_2; h_3 > min_h; h_3 -= dilationH) {
int i2 = (h_3) / dH;
if (i2 * dH != h_3) continue;
for (int w_3 = w_2; w_3 > min_w; w_3 -= dilationW) {
int j2 = (w_3) / dW;
if (j2 * dW != w_3) continue;
if
WITHIN_BOUNDS(i2, j2, H, W) {
prod_sum[ph_off][pw_off] +=
grad_output[n][ph][pw][i2][j2] * val;
}
}
}
}
}
}
}
__syncthreads();
if (ph_off == 0 && pw_off == 0)
{
if (ph_off == 0 && pw_off == 0) {
scalar_t reduce_sum = 0;
for (int ph = 0; ph < THREADS_BACKWARD; ++ph)
{
for (int pw = 0; pw < THREADS_BACKWARD; ++pw)
{
for (int ph = 0; ph < THREADS_BACKWARD; ++ph) {
for (int pw = 0; pw < THREADS_BACKWARD; ++pw) {
reduce_sum += prod_sum[ph][pw];
}
}

View File

@ -1,116 +1,87 @@
// Copyright (c) OpenMMLab. All rights reserved.
#include <iostream>
#include "pytorch_cpp_helper.hpp"
#ifdef MMCV_WITH_CUDA
void CorrelationForwardCUDAKernelLauncher(Tensor input1, Tensor input2,
Tensor output, int kH, int kW,
int patchH, int patchW,
int padH, int padW,
int dilationH, int dilationW,
int dilation_patchH,
int dilation_patchW,
int dH, int dW);
int patchH, int patchW, int padH,
int padW, int dilationH,
int dilationW, int dilation_patchH,
int dilation_patchW, int dH, int dW);
void CorrelationBackwardCUDAKernelLauncher(Tensor grad_output, Tensor input1,
Tensor input2, Tensor grad_input1,
Tensor grad_input2, int kH, int kW,
int patchH, int patchW,
int padH, int padW,
int dilationH, int dilationW,
int dilation_patchH,
int dilation_patchW,
int dH, int dW);
int patchH, int patchW, int padH,
int padW, int dilationH,
int dilationW, int dilation_patchH,
int dilation_patchW, int dH, int dW);
void correlation_cuda_forward(Tensor input1, Tensor input2, Tensor output,
int kH, int kW, int patchH, int patchW,
int padH, int padW, int dilationH, int dilationW,
int dilation_patchH, int dilation_patchW,
int dH, int dW)
{
CorrelationForwardCUDAKernelLauncher(input1, input2, output, kH, kW,
patchH, patchW, padH, padW, dilationH,
dilationW, dilation_patchH,
dilation_patchW, dH, dW);
int kH, int kW, int patchH, int patchW, int padH,
int padW, int dilationH, int dilationW,
int dilation_patchH, int dilation_patchW, int dH,
int dW) {
CorrelationForwardCUDAKernelLauncher(
input1, input2, output, kH, kW, patchH, patchW, padH, padW, dilationH,
dilationW, dilation_patchH, dilation_patchW, dH, dW);
}
void correlation_cuda_backward(Tensor grad_output,
Tensor input1, Tensor input2,
Tensor grad_input1, Tensor grad_input2,
int kH, int kW, int patchH, int patchW,
int padH, int padW,
int dilationH, int dilationW,
int dilation_patchH, int dilation_patchW,
int dH, int dW)
{
CorrelationBackwardCUDAKernelLauncher(grad_output, input1, input2,
grad_input1, grad_input2, kH, kW,
patchH, patchW, padH, padW,
dilationH, dilationW,
dilation_patchH, dilation_patchW,
dH, dW);
void correlation_cuda_backward(Tensor grad_output, Tensor input1, Tensor input2,
Tensor grad_input1, Tensor grad_input2, int kH,
int kW, int patchH, int patchW, int padH,
int padW, int dilationH, int dilationW,
int dilation_patchH, int dilation_patchW, int dH,
int dW) {
CorrelationBackwardCUDAKernelLauncher(
grad_output, input1, input2, grad_input1, grad_input2, kH, kW, patchH,
patchW, padH, padW, dilationH, dilationW, dilation_patchH,
dilation_patchW, dH, dW);
}
#endif
void correlation_forward(Tensor input1, Tensor input2, Tensor output,
int kH, int kW, int patchH, int patchW,
int padH, int padW,
int dilationH, int dilationW,
int dilation_patchH, int dilation_patchW,
int dH, int dW)
{
if (input1.device().is_cuda() and input2.device().is_cuda())
{
void correlation_forward(Tensor input1, Tensor input2, Tensor output, int kH,
int kW, int patchH, int patchW, int padH, int padW,
int dilationH, int dilationW, int dilation_patchH,
int dilation_patchW, int dH, int dW) {
if (input1.device().is_cuda() and input2.device().is_cuda()) {
#ifdef MMCV_WITH_CUDA
CHECK_CUDA_INPUT(input1);
CHECK_CUDA_INPUT(input2);
correlation_cuda_forward(input1, input2, output, kH, kW,
patchH, patchW, padH, padW,
dilationH, dilationW,
dilation_patchH, dilation_patchW,
dH, dW);
CHECK_CUDA_INPUT(input1);
CHECK_CUDA_INPUT(input2);
correlation_cuda_forward(input1, input2, output, kH, kW, patchH, patchW,
padH, padW, dilationH, dilationW, dilation_patchH,
dilation_patchW, dH, dW);
#else
AT_ERROR("Correlation is not compiled with GPU support");
AT_ERROR("Correlation is not compiled with GPU support");
#endif
}
else
{
AT_ERROR("Correlation is not implemented on CPU");
}
} else {
AT_ERROR("Correlation is not implemented on CPU");
}
}
void correlation_backward(Tensor grad_output,
Tensor input1, Tensor input2,
Tensor grad_input1, Tensor grad_input2,
int kH, int kW,
int patchH, int patchW,
int padH, int padW,
int dilationH, int dilationW,
int dilation_patchH, int dilation_patchW,
int dH, int dW)
{
if (input1.device().is_cuda() and input2.device().is_cuda())
{
void correlation_backward(Tensor grad_output, Tensor input1, Tensor input2,
Tensor grad_input1, Tensor grad_input2, int kH,
int kW, int patchH, int patchW, int padH, int padW,
int dilationH, int dilationW, int dilation_patchH,
int dilation_patchW, int dH, int dW) {
if (input1.device().is_cuda() and input2.device().is_cuda()) {
#ifdef MMCV_WITH_CUDA
CHECK_CUDA_INPUT(grad_output);
CHECK_CUDA_INPUT(input1);
CHECK_CUDA_INPUT(input2);
correlation_cuda_backward(grad_output, input1, input2,
grad_input1, grad_input2, kH, kW,
patchH, patchW, padH, padW,
dilationH, dilationW,
dilation_patchH, dilation_patchW,
dH, dW);
CHECK_CUDA_INPUT(grad_output);
CHECK_CUDA_INPUT(input1);
CHECK_CUDA_INPUT(input2);
correlation_cuda_backward(grad_output, input1, input2, grad_input1,
grad_input2, kH, kW, patchH, patchW, padH, padW,
dilationH, dilationW, dilation_patchH,
dilation_patchW, dH, dW);
#else
AT_ERROR("Correlation is not compiled with GPU support");
AT_ERROR("Correlation is not compiled with GPU support");
#endif
}
else
{
AT_ERROR("Correlation is not implemented on CPU");
}
} else {
AT_ERROR("Correlation is not implemented on CPU");
}
}

View File

@ -7,99 +7,87 @@
#include "pytorch_cuda_helper.hpp"
void CorrelationForwardCUDAKernelLauncher(Tensor input1, Tensor input2,
Tensor output, int kH, int kW,
int patchH, int patchW,
int padH, int padW,
int dilationH, int dilationW,
int dilation_patchH,
int dilation_patchW,
int dH, int dW)
{
Tensor output, int kH, int kW,
int patchH, int patchW, int padH,
int padW, int dilationH,
int dilationW, int dilation_patchH,
int dilation_patchW, int dH, int dW) {
const int batch_size = input1.size(0);
const int iH = input1.size(2);
const int iW = input1.size(3);
const int dilatedKH = (kH - 1) * dilationH + 1;
const int dilatedKW = (kW - 1) * dilationW + 1;
const int batch_size = input1.size(0);
const int iH = input1.size(2);
const int iW = input1.size(3);
const int dilatedKH = (kH - 1) * dilationH + 1;
const int dilatedKW = (kW - 1) * dilationW + 1;
const auto oH = (iH + 2 * padH - dilatedKH) / dH + 1;
const auto oW = (iW + 2 * padW - dilatedKW) / dW + 1;
auto trInput1 = input1.permute({0, 2, 3, 1}).contiguous();
auto trInput2 = input2.permute({0, 2, 3, 1}).contiguous();
const auto oH = (iH + 2 * padH - dilatedKH) / dH + 1;
const auto oW = (iW + 2 * padW - dilatedKW) / dW + 1;
const int threads = THREADS_FORWARD;
const dim3 blocks(batch_size, oH, oW);
at::cuda::CUDAGuard device_guard(input1.device());
auto trInput1 = input1.permute({0, 2, 3, 1}).contiguous();
auto trInput2 = input2.permute({0, 2, 3, 1}).contiguous();
const int threads = THREADS_FORWARD;
const dim3 blocks(batch_size, oH, oW);
at::cuda::CUDAGuard device_guard(input1.device());
AT_DISPATCH_FLOATING_TYPES_AND_HALF(input1.scalar_type(),
"correlation_forward_cuda",
([&]{
TensorAcc4R trInput1_acc = trInput1.packed_accessor32<scalar_t,4,RestrictPtrTraits>();
TensorAcc4R trInput2_acc = trInput2.packed_accessor32<scalar_t,4,RestrictPtrTraits>();
TensorAcc5R output_acc = output.packed_accessor32<scalar_t,5,RestrictPtrTraits>();
correlation_forward_cuda_kernel<scalar_t><<<blocks, threads, 0,
at::cuda::getCurrentCUDAStream()>>>(
trInput1_acc, trInput2_acc, output_acc,
kH, kW, patchH, patchW, padH, padW, dilationH, dilationW,
dilation_patchH, dilation_patchW, dH, dW);
}));
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
input1.scalar_type(), "correlation_forward_cuda", ([&] {
TensorAcc4R trInput1_acc =
trInput1.packed_accessor32<scalar_t, 4, RestrictPtrTraits>();
TensorAcc4R trInput2_acc =
trInput2.packed_accessor32<scalar_t, 4, RestrictPtrTraits>();
TensorAcc5R output_acc =
output.packed_accessor32<scalar_t, 5, RestrictPtrTraits>();
correlation_forward_cuda_kernel<scalar_t>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(
trInput1_acc, trInput2_acc, output_acc, kH, kW, patchH, patchW,
padH, padW, dilationH, dilationW, dilation_patchH,
dilation_patchW, dH, dW);
}));
}
void CorrelationBackwardCUDAKernelLauncher(
Tensor grad_output, Tensor input1, Tensor input2, Tensor grad_input1,
Tensor grad_input2, int kH, int kW, int patchH, int patchW, int padH,
int padW, int dilationH, int dilationW, int dilation_patchH,
int dilation_patchW, int dH, int dW) {
const int batch_size = input1.size(0);
const int iH = input1.size(2);
const int iW = input1.size(3);
const int C = input1.size(1);
void CorrelationBackwardCUDAKernelLauncher(Tensor grad_output, Tensor input1,
Tensor input2, Tensor grad_input1,
Tensor grad_input2, int kH, int kW,
int patchH, int patchW,
int padH, int padW,
int dilationH, int dilationW,
int dilation_patchH,
int dilation_patchW,
int dH, int dW){
const int batch_size = input1.size(0);
const int iH = input1.size(2);
const int iW = input1.size(3);
const int C = input1.size(1);
const dim3 blocks(C, iH, iW);
const dim3 threads(THREADS_BACKWARD, THREADS_BACKWARD);
const dim3 blocks(C, iH, iW);
const dim3 threads(THREADS_BACKWARD, THREADS_BACKWARD);
at::cuda::CUDAGuard device_guard(input1.device());
at::cuda::CUDAGuard device_guard(input1.device());
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
input1.scalar_type(), "correlation_backward_cuda", ([&] {
TensorAcc4R input1_acc =
input1.packed_accessor32<scalar_t, 4, RestrictPtrTraits>();
TensorAcc4R input2_acc =
input2.packed_accessor32<scalar_t, 4, RestrictPtrTraits>();
TensorAcc4R grad_input1_acc =
grad_input1.packed_accessor32<scalar_t, 4, RestrictPtrTraits>();
TensorAcc4R grad_input2_acc =
grad_input2.packed_accessor32<scalar_t, 4, RestrictPtrTraits>();
TensorAcc5R grad_output_acc =
grad_output.packed_accessor32<scalar_t, 5, RestrictPtrTraits>();
AT_DISPATCH_FLOATING_TYPES_AND_HALF(input1.scalar_type(),
"correlation_backward_cuda",
([&]{
TensorAcc4R input1_acc = input1.packed_accessor32<scalar_t,4,RestrictPtrTraits>();
TensorAcc4R input2_acc = input2.packed_accessor32<scalar_t,4,RestrictPtrTraits>();
TensorAcc4R grad_input1_acc = grad_input1.packed_accessor32<scalar_t,4,RestrictPtrTraits>();
TensorAcc4R grad_input2_acc = grad_input2.packed_accessor32<scalar_t,4,RestrictPtrTraits>();
TensorAcc5R grad_output_acc = grad_output.packed_accessor32<scalar_t,5,RestrictPtrTraits>();
for (int n = 0; n < batch_size; ++n) {
correlation_backward_cuda_kernel_input1<scalar_t>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(
grad_output_acc, input2_acc, grad_input1_acc, kH, kW, patchH,
patchW, padH, padW, dilationH, dilationW, dilation_patchH,
dilation_patchW, dH, dW, n);
}
for (int n = 0; n < batch_size; ++n){
correlation_backward_cuda_kernel_input1<scalar_t><<<blocks, threads, 0,
at::cuda::getCurrentCUDAStream()>>>(
grad_output_acc, input2_acc, grad_input1_acc,
kH, kW, patchH, patchW, padH, padW,
dilationH, dilationW,
dilation_patchH, dilation_patchW,
dH, dW, n);
}
for (int n = 0; n < batch_size; ++n){
correlation_backward_cuda_kernel_input2<scalar_t><<<blocks, threads, 0,
at::cuda::getCurrentCUDAStream()>>>(
grad_output_acc, input1_acc, grad_input2_acc,
kH, kW, patchH, patchW, padH, padW,
dilationH, dilationW,
dilation_patchH, dilation_patchW,
dH, dW, n);
}
}));
for (int n = 0; n < batch_size; ++n) {
correlation_backward_cuda_kernel_input2<scalar_t>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(
grad_output_acc, input1_acc, grad_input2_acc, kH, kW, patchH,
patchW, padH, padW, dilationH, dilationW, dilation_patchH,
dilation_patchW, dH, dW, n);
}
}));
}

View File

@ -225,22 +225,16 @@ void border_align_backward(const Tensor &grad_output, const Tensor &boxes,
const Tensor &argmax_idx, Tensor grad_input,
const int pool_size);
void correlation_forward(Tensor input1, Tensor input2, Tensor output,
int kH, int kW, int patchH, int patchW,
int padH, int padW,
int dilationH, int dilationW,
int dilation_patchH, int dilation_patchW,
int dH, int dW);
void correlation_forward(Tensor input1, Tensor input2, Tensor output, int kH,
int kW, int patchH, int patchW, int padH, int padW,
int dilationH, int dilationW, int dilation_patchH,
int dilation_patchW, int dH, int dW);
void correlation_backward(Tensor grad_output,
Tensor input1, Tensor input2,
Tensor grad_input1, Tensor grad_input2,
int kH, int kW,
int patchH, int patchW,
int padH, int padW,
int dilationH, int dilationW,
int dilation_patchH, int dilation_patchW,
int dH, int dW);
void correlation_backward(Tensor grad_output, Tensor input1, Tensor input2,
Tensor grad_input1, Tensor grad_input2, int kH,
int kW, int patchH, int patchW, int padH, int padW,
int dilationH, int dilationW, int dilation_patchH,
int dilation_patchW, int dH, int dW);
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("upfirdn2d", &upfirdn2d, "upfirdn2d (CUDA)", py::arg("input"),

View File

@ -1,23 +1,15 @@
# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch
from mmcv.ops import Correlation
_input1 = [[[[1., 2., 3.], [0., 1., 2.], [3., 5., 2.]]]]
_input2 = [[[[1., 2., 3.], [3., 1., 2.], [8., 5., 2.]]]]
_input2_2 = [[[[1., 2.], [3., 1.], [8., 5.]]]]
gt_out_shape = (1, 1, 1, 3, 3)
_gt_out = [[[[[1., 4., 9.], [0., 1., 4.], [24., 25., 4.]]]]]
gt_input1_grad = [[[[1., 2., 3.], [3., 1., 2.], [8., 5., 2.]]]]
_ap_gt_out = [[[[[1., 2., 3.], [3., 1., 2.], [8., 5., 2.]],
[[2., 4., 6.], [6., 2., 4.], [16., 10., 4.]],
[[3., 6., 9.], [9., 3., 6.], [24., 15., 6.]]],
[[[0., 0., 0.], [0., 0., 0.], [0., 0., 0.]],
[[1., 2., 3.], [3., 1., 2.], [8., 5., 2.]],
[[2., 4., 6.], [6., 2., 4.], [16., 10., 4.]]],
[[[3., 6., 9.], [9., 3., 6.], [24., 15., 6.]],
[[5., 10., 15.], [15., 5., 10.], [40., 25., 10.]],
[[2., 4., 6.], [6., 2., 4.], [16., 10., 4.]]]]]
def assert_equal_tensor(tensor_a, tensor_b):
@ -43,6 +35,8 @@ class TestCorrelation:
assert_equal_tensor(input1.grad.detach().cpu(), input2.cpu())
assert_equal_tensor(input2.grad.detach().cpu(), input1.cpu())
@pytest.mark.skipif(
not torch.cuda.is_available(), reason='requires CUDA support')
def test_correlation(self):
self._test_correlation(torch.float)
self._test_correlation(torch.double)