mirror of https://github.com/open-mmlab/mmcv.git
[Feature] Optimize the PyTorch CUDA implementation for Criss Cross Attention (#1143)
* optimize criss cross attention * optimize criss cross attention * optimize criss cross attention * fix lint * fix ci, remove useless variable * better ca_forward_kernel Co-authored-by: wondervictor <victorchanchina@gmail.com>pull/1144/head
parent
6fe3722510
commit
7b150fab34
|
@ -14,25 +14,17 @@ __global__ void ca_forward_kernel(const T *t, const T *f, T *weight, int num,
|
|||
int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
int sp = height * width;
|
||||
int len = height + width - 1;
|
||||
int z = blockIdx.z;
|
||||
int z = blockIdx.z % len;
|
||||
int batch = blockIdx.z / len;
|
||||
|
||||
if (x < width && y < height && z < height + width - 1) {
|
||||
for (int batch = 0; batch < num; ++batch) {
|
||||
for (int plane = 0; plane < chn; ++plane) {
|
||||
T _t = t[(batch * chn + plane) * sp + y * width + x];
|
||||
|
||||
if (z < width) {
|
||||
int i = z;
|
||||
T _f = f[(batch * chn + plane) * sp + y * width + i];
|
||||
weight[(batch * len + i) * sp + y * width + x] += _t * _f;
|
||||
} else {
|
||||
int i = z - width;
|
||||
int j = i < y ? i : i + 1;
|
||||
|
||||
T _f = f[(batch * chn + plane) * sp + j * width + x];
|
||||
weight[(batch * len + width + i) * sp + y * width + x] += _t * _f;
|
||||
}
|
||||
}
|
||||
if (x < width && y < height) {
|
||||
T *weight_ptr = weight + (batch * len + z) * sp + y * width + x;
|
||||
const int t_offset = y * width + x;
|
||||
const int j = (z - width < y) ? z - width : z - width + 1;
|
||||
const int f_offset = z < width ? y * width + z : j * width + x;
|
||||
for (int plane = 0; plane < chn; ++plane) {
|
||||
const int tf_base = (batch * chn + plane) * sp;
|
||||
*weight_ptr += t[tf_base + t_offset] * f[tf_base + f_offset];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -44,23 +36,22 @@ __global__ void ca_backward_kernel_t(const T *dw, const T *t, const T *f, T *dt,
|
|||
int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
int sp = height * width;
|
||||
int len = height + width - 1;
|
||||
int plane = blockIdx.z;
|
||||
int plane = blockIdx.z % chn;
|
||||
int batch = blockIdx.z / chn;
|
||||
|
||||
if (x < width && y < height && plane < chn) {
|
||||
for (int batch = 0; batch < num; ++batch) {
|
||||
for (int i = 0; i < width; ++i) {
|
||||
T _dw = dw[(batch * len + i) * sp + y * width + x];
|
||||
T _f = f[(batch * chn + plane) * sp + y * width + i];
|
||||
dt[(batch * chn + plane) * sp + y * width + x] += _dw * _f;
|
||||
}
|
||||
for (int i = 0; i < height; ++i) {
|
||||
if (i == y) continue;
|
||||
int j = i < y ? i : i - 1;
|
||||
if (x < width && y < height) {
|
||||
for (int i = 0; i < width; ++i) {
|
||||
T _dw = dw[(batch * len + i) * sp + y * width + x];
|
||||
T _f = f[(batch * chn + plane) * sp + y * width + i];
|
||||
dt[(batch * chn + plane) * sp + y * width + x] += _dw * _f;
|
||||
}
|
||||
for (int i = 0; i < height; ++i) {
|
||||
if (i == y) continue;
|
||||
int j = i < y ? i : i - 1;
|
||||
|
||||
T _dw = dw[(batch * len + width + j) * sp + y * width + x];
|
||||
T _f = f[(batch * chn + plane) * sp + i * width + x];
|
||||
dt[(batch * chn + plane) * sp + y * width + x] += _dw * _f;
|
||||
}
|
||||
T _dw = dw[(batch * len + width + j) * sp + y * width + x];
|
||||
T _f = f[(batch * chn + plane) * sp + i * width + x];
|
||||
dt[(batch * chn + plane) * sp + y * width + x] += _dw * _f;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -72,23 +63,22 @@ __global__ void ca_backward_kernel_f(const T *dw, const T *t, const T *f, T *df,
|
|||
int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
int sp = height * width;
|
||||
int len = height + width - 1;
|
||||
int plane = blockIdx.z;
|
||||
int plane = blockIdx.z % chn;
|
||||
int batch = blockIdx.z / chn;
|
||||
|
||||
if (x < width && y < height && plane < chn) {
|
||||
for (int batch = 0; batch < num; ++batch) {
|
||||
for (int i = 0; i < width; ++i) {
|
||||
T _dw = dw[(batch * len + x) * sp + y * width + i];
|
||||
T _t = t[(batch * chn + plane) * sp + y * width + i];
|
||||
df[(batch * chn + plane) * sp + y * width + x] += _dw * _t;
|
||||
}
|
||||
for (int i = 0; i < height; ++i) {
|
||||
if (i == y) continue;
|
||||
int j = i > y ? y : y - 1;
|
||||
if (x < width && y < height) {
|
||||
for (int i = 0; i < width; ++i) {
|
||||
T _dw = dw[(batch * len + x) * sp + y * width + i];
|
||||
T _t = t[(batch * chn + plane) * sp + y * width + i];
|
||||
df[(batch * chn + plane) * sp + y * width + x] += _dw * _t;
|
||||
}
|
||||
for (int i = 0; i < height; ++i) {
|
||||
if (i == y) continue;
|
||||
int j = i > y ? y : y - 1;
|
||||
|
||||
T _dw = dw[(batch * len + width + j) * sp + i * width + x];
|
||||
T _t = t[(batch * chn + plane) * sp + i * width + x];
|
||||
df[(batch * chn + plane) * sp + y * width + x] += _dw * _t;
|
||||
}
|
||||
T _dw = dw[(batch * len + width + j) * sp + i * width + x];
|
||||
T _t = t[(batch * chn + plane) * sp + i * width + x];
|
||||
df[(batch * chn + plane) * sp + y * width + x] += _dw * _t;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -100,24 +90,22 @@ __global__ void ca_map_forward_kernel(const T *weight, const T *g, T *out,
|
|||
int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
int sp = height * width;
|
||||
int len = height + width - 1;
|
||||
int plane = blockIdx.z;
|
||||
int plane = blockIdx.z % chn;
|
||||
int batch = blockIdx.z / chn;
|
||||
if (x < width && y < height) {
|
||||
for (int i = 0; i < width; ++i) {
|
||||
T _g = g[(batch * chn + plane) * sp + y * width + i];
|
||||
T _w = weight[(batch * len + i) * sp + y * width + x];
|
||||
out[(batch * chn + plane) * sp + y * width + x] += _g * _w;
|
||||
}
|
||||
for (int i = 0; i < height; ++i) {
|
||||
if (i == y) continue;
|
||||
|
||||
if (x < width && y < height && plane < chn) {
|
||||
for (int batch = 0; batch < num; ++batch) {
|
||||
for (int i = 0; i < width; ++i) {
|
||||
T _g = g[(batch * chn + plane) * sp + y * width + i];
|
||||
T _w = weight[(batch * len + i) * sp + y * width + x];
|
||||
out[(batch * chn + plane) * sp + y * width + x] += _g * _w;
|
||||
}
|
||||
for (int i = 0; i < height; ++i) {
|
||||
if (i == y) continue;
|
||||
int j = i < y ? i : i - 1;
|
||||
|
||||
int j = i < y ? i : i - 1;
|
||||
|
||||
T _g = g[(batch * chn + plane) * sp + i * width + x];
|
||||
T _w = weight[(batch * len + width + j) * sp + y * width + x];
|
||||
out[(batch * chn + plane) * sp + y * width + x] += _g * _w;
|
||||
}
|
||||
T _g = g[(batch * chn + plane) * sp + i * width + x];
|
||||
T _w = weight[(batch * len + width + j) * sp + y * width + x];
|
||||
out[(batch * chn + plane) * sp + y * width + x] += _g * _w;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -130,25 +118,23 @@ __global__ void ca_map_backward_kernel_w(const T *dout, const T *weight,
|
|||
int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
int sp = height * width;
|
||||
int len = height + width - 1;
|
||||
int z = blockIdx.z;
|
||||
|
||||
if (x < width && y < height && z < height + width - 1) {
|
||||
for (int batch = 0; batch < num; ++batch) {
|
||||
for (int plane = 0; plane < chn; ++plane) {
|
||||
T _dout = dout[(batch * chn + plane) * sp + y * width + x];
|
||||
int z = blockIdx.z % len;
|
||||
int batch = blockIdx.z / len;
|
||||
|
||||
if (z < width) {
|
||||
int i = z;
|
||||
T _g = g[(batch * chn + plane) * sp + y * width + i];
|
||||
dw[(batch * len + i) * sp + y * width + x] += _dout * _g;
|
||||
} else {
|
||||
int i = z - width;
|
||||
int j = i < y ? i : i + 1;
|
||||
|
||||
T _g = g[(batch * chn + plane) * sp + j * width + x];
|
||||
dw[(batch * len + width + i) * sp + y * width + x] += _dout * _g;
|
||||
}
|
||||
}
|
||||
if (x < width && y < height) {
|
||||
int widx = (batch * len + z) * sp + y * width + x;
|
||||
int dout_idx = batch * chn * sp + y * width + x;
|
||||
int gidx = batch * chn * sp;
|
||||
if (z < width) {
|
||||
gidx += y * width + z;
|
||||
} else {
|
||||
int j = z - width;
|
||||
j = j < y ? j : j + 1;
|
||||
gidx += j * width + x;
|
||||
}
|
||||
for (int plane = 0; plane < chn; plane++) {
|
||||
dw[widx] += dout[dout_idx + plane * sp] * g[gidx + plane * sp];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -161,25 +147,21 @@ __global__ void ca_map_backward_kernel_g(const T *dout, const T *weight,
|
|||
int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
int sp = height * width;
|
||||
int len = height + width - 1;
|
||||
int plane = blockIdx.z;
|
||||
int plane = blockIdx.z % chn;
|
||||
int batch = blockIdx.z / chn;
|
||||
int index = (batch * chn + plane) * sp + y * width + x;
|
||||
|
||||
if (x < width && y < height && plane < chn) {
|
||||
for (int batch = 0; batch < num; ++batch) {
|
||||
for (int i = 0; i < width; ++i) {
|
||||
T _dout = dout[(batch * chn + plane) * sp + y * width + i];
|
||||
T _w = weight[(batch * len + x) * sp + y * width + i];
|
||||
dg[(batch * chn + plane) * sp + y * width + x] += _dout * _w;
|
||||
}
|
||||
for (int i = 0; i < height; ++i) {
|
||||
if (i == y) continue;
|
||||
int j = i > y ? y : y - 1;
|
||||
|
||||
T _dout = dout[(batch * chn + plane) * sp + i * width + x];
|
||||
T _w = weight[(batch * len + width + j) * sp + i * width + x];
|
||||
dg[(batch * chn + plane) * sp + y * width + x] += _dout * _w;
|
||||
}
|
||||
if (x < width && y < height) {
|
||||
for (int i = 0; i < width; ++i) {
|
||||
dg[index] += dout[(batch * chn + plane) * sp + y * width + i] *
|
||||
weight[(batch * len + x) * sp + y * width + i];
|
||||
}
|
||||
for (int i = 0; i < height; ++i) {
|
||||
if (i == y) continue;
|
||||
int j = i > y ? y : y - 1;
|
||||
dg[index] += dout[(batch * chn + plane) * sp + i * width + x] *
|
||||
weight[(batch * len + width + j) * sp + i * width + x];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif // CC_ATTENTION_CUDA_KERNEL_CUH
|
||||
|
|
|
@ -24,8 +24,8 @@ void CAForwardCUDAKernelLauncher(const Tensor t, const Tensor f,
|
|||
dim3 threads(32, 32);
|
||||
int d1 = (w + threads.x - 1) / threads.x;
|
||||
int d2 = (h + threads.y - 1) / threads.y;
|
||||
int d3 = h + w;
|
||||
dim3 blocks(d1, d2, d3);
|
||||
int d3 = h + w - 1;
|
||||
dim3 blocks(d1, d2, d3 * n);
|
||||
|
||||
AT_DISPATCH_FLOATING_TYPES(t.scalar_type(), "ca_forward", [&] {
|
||||
ca_forward_kernel<scalar_t><<<blocks, threads, 0, stream>>>(
|
||||
|
@ -53,7 +53,7 @@ void CABackwardCUDAKernelLauncher(const Tensor dw, const Tensor t,
|
|||
dim3 threads(32, 32);
|
||||
int d1 = (w + threads.x - 1) / threads.x;
|
||||
int d2 = (h + threads.y - 1) / threads.y;
|
||||
int d3 = c;
|
||||
int d3 = c * n;
|
||||
dim3 blocks(d1, d2, d3);
|
||||
|
||||
AT_DISPATCH_FLOATING_TYPES(t.scalar_type(), "ca_backward_kernel_t", [&] {
|
||||
|
@ -90,7 +90,7 @@ void CAMapForwardCUDAKernelLauncher(const Tensor weight, const Tensor g,
|
|||
dim3 threads(32, 32);
|
||||
int d1 = (w + threads.x - 1) / threads.x;
|
||||
int d2 = (h + threads.y - 1) / threads.y;
|
||||
int d3 = c;
|
||||
int d3 = c * n;
|
||||
dim3 blocks(d1, d2, d3);
|
||||
|
||||
AT_DISPATCH_FLOATING_TYPES(g.scalar_type(), "ca_map_forward", [&] {
|
||||
|
@ -119,8 +119,8 @@ void CAMapBackwardCUDAKernelLauncher(const Tensor dout, const Tensor weight,
|
|||
dim3 threads(32, 32);
|
||||
int d1 = (w + threads.x - 1) / threads.x;
|
||||
int d2 = (h + threads.y - 1) / threads.y;
|
||||
int d3 = h + w;
|
||||
dim3 blocks(d1, d2, d3);
|
||||
int d3 = h + w - 1;
|
||||
dim3 blocks(d1, d2, d3 * n);
|
||||
|
||||
AT_DISPATCH_FLOATING_TYPES(
|
||||
weight.scalar_type(), "ca_map_backward_kernel_w", [&] {
|
||||
|
@ -130,7 +130,8 @@ void CAMapBackwardCUDAKernelLauncher(const Tensor dout, const Tensor weight,
|
|||
g.contiguous().data_ptr<scalar_t>(),
|
||||
dw.contiguous().data_ptr<scalar_t>(), n, c, h, w);
|
||||
});
|
||||
|
||||
d3 = c * n;
|
||||
blocks = dim3(d1, d2, d3);
|
||||
AT_DISPATCH_FLOATING_TYPES(g.scalar_type(), "ca_map_backward_kernel_g", [&] {
|
||||
ca_map_backward_kernel_g<scalar_t><<<blocks, threads, 0, stream>>>(
|
||||
dout.contiguous().data_ptr<scalar_t>(),
|
||||
|
|
Loading…
Reference in New Issue