[Feature] add cummax/cummin tensorrt plugin (#1031)

* add cummax/cummin tensorrt plugin

* fix isort

* fix with clang-format

* fix with clang-format again

* add document
pull/1041/head^2
q.yao 2021-05-24 13:55:21 +08:00 committed by GitHub
parent 55b4847a41
commit 9d1436fb6c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
8 changed files with 637 additions and 2 deletions

View File

@ -33,6 +33,18 @@
- [Inputs](#inputs-4)
- [Outputs](#outputs-4)
- [Type Constraints](#type-constraints-4)
- [cummax](#cummax)
- [Description](#description-5)
- [Parameters](#parameters-5)
- [Inputs](#inputs-5)
- [Outputs](#outputs-5)
- [Type Constraints](#type-constraints-5)
- [cummin](#cummin)
- [Description](#description-6)
- [Parameters](#parameters-6)
- [Inputs](#inputs-6)
- [Outputs](#outputs-6)
- [Type Constraints](#type-constraints-6)
<!-- TOC -->
@ -227,3 +239,67 @@ Perform sample from `input` with pixel locations from `grid`.
### Type Constraints
- T:tensor(float32, Linear)
## cummax
### Description
Returns a namedtuple (`values`, `indices`) where `values` is the cumulative maximum of elements of `input` in the dimension `dim`. And `indices` is the index location of each maximum value found in the dimension `dim`.
### Parameters
| Type | Parameter | Description |
| ----- | --------- | --------------------------------------- |
| `int` | `dim` | The dimension to do the operation over. |
### Inputs
<dl>
<dt><tt>inputs[0]</tt>: T</dt>
<dd>The input tensor.</dd>
</dl>
### Outputs
<dl>
<dt><tt>outputs[0]</tt>: T</dt>
<dd>Output values.</dd>
<dt><tt>outputs[1]</tt>: (int32, Linear)</dt>
<dd>Output indices.</dd>
</dl>
### Type Constraints
- T:tensor(float32, Linear)
## cummin
### Description
Returns a namedtuple (`values`, `indices`) where `values` is the cumulative minimum of elements of `input` in the dimension `dim`. And `indices` is the index location of each minimum value found in the dimension `dim`.
### Parameters
| Type | Parameter | Description |
| ----- | --------- | --------------------------------------- |
| `int` | `dim` | The dimension to do the operation over. |
### Inputs
<dl>
<dt><tt>inputs[0]</tt>: T</dt>
<dd>The input tensor.</dd>
</dl>
### Outputs
<dl>
<dt><tt>outputs[0]</tt>: T</dt>
<dd>Output values.</dd>
<dt><tt>outputs[1]</tt>: (int32, Linear)</dt>
<dd>Output indices.</dd>
</dl>
### Type Constraints
- T:tensor(float32, Linear)

View File

@ -30,7 +30,9 @@ To ease the deployment of trained models with custom operators from `mmcv.ops` u
| ScatterND | [ScatterND](./tensorrt_custom_ops.md#scatternd) | 1.2.6 |
| NonMaxSuppression | [NonMaxSuppression](./tensorrt_custom_ops.md#nonmaxsuppression) | 1.3.0 |
| MMCVDeformConv2d | [MMCVDeformConv2d](./tensorrt_custom_ops.md#mmcvdeformconv2d) | 1.3.0 |
| grid_sampler | [grid_sampler](./tensorrt_custom_ops.md#grid-sampler) | master |
| grid_sampler | [grid_sampler](./tensorrt_custom_ops.md#grid-sampler) | 1.3.1 |
| cummax | [cummax](./tensorrt_custom_ops.md#cummax) | master |
| cummin | [cummin](./tensorrt_custom_ops.md#cummin) | master |
Notes

View File

@ -0,0 +1,241 @@
#include "trt_cummaxmin.hpp"
#include <assert.h>
#include "trt_serialize.hpp"
void CumMaxMinForwardLauncher_float(const float *input, float *output_value,
int *output_index, const int *dims,
int nbDims, int cum_dim, int cum_type,
cudaStream_t stream);
void CumMaxMinForwardLauncher_int32(const int *input, int *output_value,
int *output_index, const int *dims,
int nbDims, int cum_dim, int cum_type,
cudaStream_t stream);
namespace {
static const char *PLUGIN_VERSION{"1"};
static const char *CUMMAXMIN_PLUGIN_NAME{"cummaxmin"};
static const char *CUMMAX_PLUGIN_NAME{"cummax"};
static const char *CUMMIN_PLUGIN_NAME{"cummin"};
} // namespace
CumMaxMinPluginDynamic::CumMaxMinPluginDynamic(const std::string &name, int dim,
TRT_CUMCMPTYPE cumType)
: mLayerName(name), mDim(dim), mCumType(cumType) {}
CumMaxMinPluginDynamic::CumMaxMinPluginDynamic(const std::string name,
const void *data, size_t length)
: mLayerName(name) {
deserialize_value(&data, &length, &mDim);
deserialize_value(&data, &length, &mCumType);
}
CumMaxMinPluginDynamic::~CumMaxMinPluginDynamic() {}
nvinfer1::IPluginV2DynamicExt *CumMaxMinPluginDynamic::clone() const {
CumMaxMinPluginDynamic *plugin =
new CumMaxMinPluginDynamic(mLayerName, mDim, mCumType);
plugin->setPluginNamespace(getPluginNamespace());
return plugin;
}
nvinfer1::DimsExprs CumMaxMinPluginDynamic::getOutputDimensions(
int outputIndex, const nvinfer1::DimsExprs *inputs, int nbInputs,
nvinfer1::IExprBuilder &exprBuilder) {
return inputs[0];
}
bool CumMaxMinPluginDynamic::supportsFormatCombination(
int pos, const nvinfer1::PluginTensorDesc *inOut, int nbInputs,
int nbOutputs) {
switch (pos) {
// input[0]
case 0:
return (inOut[pos].type == nvinfer1::DataType::kFLOAT ||
inOut[pos].type == nvinfer1::DataType::kINT32) &&
inOut[pos].format == nvinfer1::TensorFormat::kLINEAR;
// output[0]
case 1:
return inOut[pos].type == inOut[0].type &&
inOut[pos].format == inOut[0].format;
// output[1]
case 2:
return inOut[pos].type == nvinfer1::DataType::kINT32 &&
inOut[pos].format == nvinfer1::TensorFormat::kLINEAR;
default:
return false;
}
}
void CumMaxMinPluginDynamic::configurePlugin(
const nvinfer1::DynamicPluginTensorDesc *inputs, int nbInputs,
const nvinfer1::DynamicPluginTensorDesc *outputs, int nbOutputs) {}
size_t CumMaxMinPluginDynamic::getWorkspaceSize(
const nvinfer1::PluginTensorDesc *inputs, int nbInputs,
const nvinfer1::PluginTensorDesc *outputs, int nbOutputs) const {
int sizeof_dtype = mmcv::getElementSize(outputs[0].type);
}
int CumMaxMinPluginDynamic::enqueue(
const nvinfer1::PluginTensorDesc *inputDesc,
const nvinfer1::PluginTensorDesc *outputDesc, const void *const *inputs,
void *const *outputs, void *workSpace, cudaStream_t stream) {
const void *input = inputs[0];
void *output_value = outputs[0];
int *output_index = (int *)outputs[1];
const int *dims = &(inputDesc[0].dims.d[0]);
int nbDims = inputDesc[0].dims.nbDims;
switch (inputDesc[0].type) {
case nvinfer1::DataType::kFLOAT:
CumMaxMinForwardLauncher_float((float *)input, (float *)output_value,
output_index, dims, nbDims, mDim,
int(mCumType), stream);
break;
case nvinfer1::DataType::kINT32:
CumMaxMinForwardLauncher_int32((int *)input, (int *)output_value,
output_index, dims, nbDims, mDim,
int(mCumType), stream);
break;
default:
break;
}
return 0;
}
nvinfer1::DataType CumMaxMinPluginDynamic::getOutputDataType(
int index, const nvinfer1::DataType *inputTypes, int nbInputs) const {
switch (index) {
case 0:
return inputTypes[0];
case 1:
return nvinfer1::DataType::kINT32;
default:
break;
}
}
// IPluginV2 Methods
const char *CumMaxMinPluginDynamic::getPluginType() const {
switch (mCumType) {
case TRT_CUMCMPTYPE::TRT_CUMMAX:
return CUMMAX_PLUGIN_NAME;
case TRT_CUMCMPTYPE::TRT_CUMMIN:
return CUMMIN_PLUGIN_NAME;
default:
return "UnknownCumType";
}
}
const char *CumMaxMinPluginDynamic::getPluginVersion() const {
return PLUGIN_VERSION;
}
int CumMaxMinPluginDynamic::getNbOutputs() const { return 2; }
int CumMaxMinPluginDynamic::initialize() { return 0; }
void CumMaxMinPluginDynamic::terminate() {}
size_t CumMaxMinPluginDynamic::getSerializationSize() const {
return sizeof(mDim) + sizeof(mCumType);
}
void CumMaxMinPluginDynamic::serialize(void *buffer) const {
serialize_value(&buffer, mDim);
serialize_value(&buffer, mCumType);
}
void CumMaxMinPluginDynamic::destroy() {
// This gets called when the network containing plugin is destroyed
delete this;
}
void CumMaxMinPluginDynamic::setPluginNamespace(const char *libNamespace) {
mNamespace = libNamespace;
}
const char *CumMaxMinPluginDynamic::getPluginNamespace() const {
return mNamespace.c_str();
}
CumMaxMinPluginDynamicCreator::CumMaxMinPluginDynamicCreator(
TRT_CUMCMPTYPE cumType)
: mCumType(cumType) {
mPluginAttributes.clear();
mPluginAttributes.emplace_back(nvinfer1::PluginField("dim"));
mFC.nbFields = mPluginAttributes.size();
mFC.fields = mPluginAttributes.data();
}
const char *CumMaxMinPluginDynamicCreator::getPluginName() const {
return CUMMAXMIN_PLUGIN_NAME;
}
const char *CumMaxMinPluginDynamicCreator::getPluginVersion() const {
return PLUGIN_VERSION;
}
const nvinfer1::PluginFieldCollection *
CumMaxMinPluginDynamicCreator::getFieldNames() {
return &mFC;
}
nvinfer1::IPluginV2 *CumMaxMinPluginDynamicCreator::createPlugin(
const char *name, const nvinfer1::PluginFieldCollection *fc) {
int dim = 0;
for (int i = 0; i < fc->nbFields; i++) {
if (fc->fields[i].data == nullptr) {
continue;
}
std::string field_name(fc->fields[i].name);
if (field_name.compare("dim") == 0) {
dim = static_cast<const int *>(fc->fields[i].data)[0];
}
}
CumMaxMinPluginDynamic *plugin =
new CumMaxMinPluginDynamic(name, dim, mCumType);
plugin->setPluginNamespace(getPluginNamespace());
return plugin;
}
nvinfer1::IPluginV2 *CumMaxMinPluginDynamicCreator::deserializePlugin(
const char *name, const void *serialData, size_t serialLength) {
// This object will be deleted when the network is destroyed, which will
// call FCPluginDynamic::destroy()
auto plugin = new CumMaxMinPluginDynamic(name, serialData, serialLength);
plugin->setPluginNamespace(getPluginNamespace());
return plugin;
}
void CumMaxMinPluginDynamicCreator::setPluginNamespace(
const char *libNamespace) {
mNamespace = libNamespace;
}
const char *CumMaxMinPluginDynamicCreator::getPluginNamespace() const {
return mNamespace.c_str();
}
CumMaxPluginDynamicCreator::CumMaxPluginDynamicCreator()
: CumMaxMinPluginDynamicCreator(TRT_CUMCMPTYPE::TRT_CUMMAX) {}
const char *CumMaxPluginDynamicCreator::getPluginName() const {
return CUMMAX_PLUGIN_NAME;
}
CumMinPluginDynamicCreator::CumMinPluginDynamicCreator()
: CumMaxMinPluginDynamicCreator(TRT_CUMCMPTYPE::TRT_CUMMIN) {}
const char *CumMinPluginDynamicCreator::getPluginName() const {
return CUMMIN_PLUGIN_NAME;
}

View File

@ -0,0 +1,89 @@
#include "common_cuda_helper.hpp"
#include "trt_cuda_helper.cuh"
#include "trt_plugin_helper.hpp"
using mmcv::TensorDesc;
template <typename scalar_t>
__global__ void cummaxmin_kernel(const scalar_t *input, scalar_t *output_value,
int *output_index, TensorDesc tensor_desc,
int cum_dim, int cum_type) {
const size_t cum_size = tensor_desc.shape[cum_dim];
const size_t cum_stride = tensor_desc.stride[cum_dim];
const size_t data_size =
tensor_desc.stride[0] * tensor_desc.shape[0] / cum_size;
CUDA_1D_KERNEL_LOOP(index, data_size) {
size_t cum_offset =
index / cum_stride * (cum_size * cum_stride) + index % cum_stride;
int cum_index = 0;
auto cum_value = input[cum_offset];
output_value[cum_offset] = cum_value;
output_index[cum_offset] = cum_index;
for (size_t cum_index_current = 1; cum_index_current < cum_size;
++cum_index_current) {
cum_offset += cum_stride;
const auto cum_value_current = input[cum_offset];
switch (cum_type) {
case 0: // max
if (cum_value_current > cum_value) {
cum_value = cum_value_current;
cum_index = cum_index_current;
}
break;
case 1: // min
if (cum_value_current < cum_value) {
cum_value = cum_value_current;
cum_index = cum_index_current;
}
break;
}
output_value[cum_offset] = cum_value;
output_index[cum_offset] = cum_index;
}
}
}
template <typename scalar_t>
void CumMaxMinForwardLauncher(const scalar_t *input, scalar_t *output_value,
int *output_index, const int *dims, int nbDims,
int cum_dim, int cum_type, cudaStream_t stream) {
// fill tensordesc and initial
TensorDesc tensor_desc;
memset((void *)&tensor_desc, 0, sizeof(TensorDesc));
tensor_desc.dim = nbDims;
tensor_desc.shape[nbDims - 1] = dims[nbDims - 1];
tensor_desc.stride[nbDims - 1] = 1;
for (int i = nbDims - 2; i >= 0; --i) {
tensor_desc.shape[i] = dims[i];
tensor_desc.stride[i] = dims[i + 1] * tensor_desc.stride[i + 1];
}
// cum dim should be larger than 0
cum_dim = cum_dim >= 0 ? cum_dim : (nbDims + cum_dim);
const int data_size =
tensor_desc.stride[0] * tensor_desc.shape[0] / tensor_desc.shape[cum_dim];
const int col_block = DIVUP(data_size, THREADS_PER_BLOCK);
cummaxmin_kernel<scalar_t><<<col_block, THREADS_PER_BLOCK, 0, stream>>>(
input, output_value, output_index, tensor_desc, cum_dim, cum_type);
}
void CumMaxMinForwardLauncher_float(const float *input, float *output_value,
int *output_index, const int *dims,
int nbDims, int cum_dim, int cum_type,
cudaStream_t stream) {
CumMaxMinForwardLauncher<float>(input, output_value, output_index, dims,
nbDims, cum_dim, cum_type, stream);
}
void CumMaxMinForwardLauncher_int32(const int *input, int *output_value,
int *output_index, const int *dims,
int nbDims, int cum_dim, int cum_type,
cudaStream_t stream) {
CumMaxMinForwardLauncher<int>(input, output_value, output_index, dims, nbDims,
cum_dim, cum_type, stream);
}

View File

@ -1,11 +1,14 @@
#include "trt_plugin.hpp"
#include "trt_cummaxmin.hpp"
#include "trt_deform_conv.hpp"
#include "trt_grid_sampler.hpp"
#include "trt_nms.hpp"
#include "trt_roi_align.hpp"
#include "trt_scatternd.hpp"
REGISTER_TENSORRT_PLUGIN(CumMaxPluginDynamicCreator);
REGISTER_TENSORRT_PLUGIN(CumMinPluginDynamicCreator);
REGISTER_TENSORRT_PLUGIN(GridSamplerDynamicCreator);
REGISTER_TENSORRT_PLUGIN(DeformableConvPluginDynamicCreator);
REGISTER_TENSORRT_PLUGIN(NonMaxSuppressionDynamicCreator);

View File

@ -0,0 +1,122 @@
#ifndef TRT_CUMMAXMIN_HPP
#define TRT_CUMMAXMIN_HPP
#include <string>
#include <vector>
#include "trt_plugin_helper.hpp"
enum TRT_CUMCMPTYPE { TRT_CUMMAX = 0, TRT_CUMMIN = 1 };
// implement of cummax and cummin
class CumMaxMinPluginDynamic : public nvinfer1::IPluginV2DynamicExt {
public:
CumMaxMinPluginDynamic(const std::string &name, int dim,
TRT_CUMCMPTYPE cumType);
CumMaxMinPluginDynamic(const std::string name, const void *data,
size_t length);
CumMaxMinPluginDynamic() = delete;
~CumMaxMinPluginDynamic();
// IPluginV2DynamicExt Methods
nvinfer1::IPluginV2DynamicExt *clone() const override;
nvinfer1::DimsExprs getOutputDimensions(
int outputIndex, const nvinfer1::DimsExprs *inputs, int nbInputs,
nvinfer1::IExprBuilder &exprBuilder) override;
bool supportsFormatCombination(int pos,
const nvinfer1::PluginTensorDesc *inOut,
int nbInputs, int nbOutputs) override;
void configurePlugin(const nvinfer1::DynamicPluginTensorDesc *in,
int nbInputs,
const nvinfer1::DynamicPluginTensorDesc *out,
int nbOutputs) override;
size_t getWorkspaceSize(const nvinfer1::PluginTensorDesc *inputs,
int nbInputs,
const nvinfer1::PluginTensorDesc *outputs,
int nbOutputs) const override;
int enqueue(const nvinfer1::PluginTensorDesc *inputDesc,
const nvinfer1::PluginTensorDesc *outputDesc,
const void *const *inputs, void *const *outputs, void *workspace,
cudaStream_t stream) override;
// IPluginV2Ext Methods
nvinfer1::DataType getOutputDataType(int index,
const nvinfer1::DataType *inputTypes,
int nbInputs) const override;
// IPluginV2 Methods
const char *getPluginType() const override;
const char *getPluginVersion() const override;
int getNbOutputs() const override;
int initialize() override;
void terminate() override;
size_t getSerializationSize() const override;
void serialize(void *buffer) const override;
void destroy() override;
void setPluginNamespace(const char *pluginNamespace) override;
const char *getPluginNamespace() const override;
protected:
const std::string mLayerName;
std::string mNamespace;
int mDim;
TRT_CUMCMPTYPE mCumType;
protected:
// To prevent compiler warnings.
using nvinfer1::IPluginV2DynamicExt::canBroadcastInputAcrossBatch;
using nvinfer1::IPluginV2DynamicExt::configurePlugin;
using nvinfer1::IPluginV2DynamicExt::enqueue;
using nvinfer1::IPluginV2DynamicExt::getOutputDimensions;
using nvinfer1::IPluginV2DynamicExt::getWorkspaceSize;
using nvinfer1::IPluginV2DynamicExt::isOutputBroadcastAcrossBatch;
using nvinfer1::IPluginV2DynamicExt::supportsFormat;
};
// cummax and cummin creator
class CumMaxMinPluginDynamicCreator : public nvinfer1::IPluginCreator {
public:
CumMaxMinPluginDynamicCreator(TRT_CUMCMPTYPE cumType);
const char *getPluginName() const override;
const char *getPluginVersion() const override;
const nvinfer1::PluginFieldCollection *getFieldNames() override;
nvinfer1::IPluginV2 *createPlugin(
const char *name, const nvinfer1::PluginFieldCollection *fc) override;
nvinfer1::IPluginV2 *deserializePlugin(const char *name,
const void *serialData,
size_t serialLength) override;
void setPluginNamespace(const char *pluginNamespace) override;
const char *getPluginNamespace() const override;
protected:
TRT_CUMCMPTYPE mCumType;
nvinfer1::PluginFieldCollection mFC;
std::vector<nvinfer1::PluginField> mPluginAttributes;
std::string mNamespace;
};
// cummax creator
class CumMaxPluginDynamicCreator : public CumMaxMinPluginDynamicCreator {
public:
CumMaxPluginDynamicCreator();
const char *getPluginName() const override;
};
// cummin creator
class CumMinPluginDynamicCreator : public CumMaxMinPluginDynamicCreator {
public:
CumMinPluginDynamicCreator();
const char *getPluginName() const override;
};
#endif TRT_CUMMAXMIN_HPP // TRT_CUMMAXMIN_HPP

View File

@ -238,7 +238,7 @@ class TRTWraper(torch.nn.Module):
output_names should be the same as onnx model.
"""
def __init__(self, engine, input_names, output_names):
def __init__(self, engine, input_names=None, output_names=None):
super(TRTWraper, self).__init__()
self.engine = engine
if isinstance(self.engine, str):
@ -250,6 +250,11 @@ class TRTWraper(torch.nn.Module):
self._register_state_dict_hook(TRTWraper._on_state_dict)
self.context = self.engine.create_execution_context()
# get input and output names from engine
if input_names is None or output_names is None:
names = [_ for _ in self.engine]
input_names = list(filter(self.engine.binding_is_input, names))
output_names = list(set(names) - set(input_names))
self.input_names = input_names
self.output_names = output_names

View File

@ -1,5 +1,6 @@
import os
from functools import partial
from typing import Callable
import numpy as np
import onnx
@ -478,3 +479,99 @@ def test_grid_sample(mode, padding_mode, align_corners):
if os.path.exists(trt_file):
os.remove(trt_file)
assert torch.allclose(pytorch_results, trt_results)
@pytest.mark.parametrize('func', [torch.cummax, torch.cummin])
def test_cummin_cummax(func: Callable):
# Note generally `cummax` or `cummin` is exportable to ONNX
# as long as the pytorch version >= 1.5.0, since `torch.cummax`
# is only supported with torch >= 1.5.0.
# But when `cummax` or `cummin` serves as an intermediate component
# whose outputs is used as inputs for another modules, it's expected
# that pytorch version must be >= 1.7.0. Otherwise error appears like:
# `RuntimeError: tuple appears in op that does not forward tuples,
# unsupported 'kind: prim::PythonOp`.
from packaging import version
if version.parse(torch.__version__) < version.parse('1.7.0'):
pytest.skip('test_cummax_cummin should be ran with pytorch >= 1.7.0')
opset = 11
# register custom op `mmcv::cummax` and `mmcv::cummin`
from mmcv.onnx.symbolic import register_extra_symbolics
register_extra_symbolics(opset)
input_list = [
# arbitrary shape, e.g. 1-D, 2-D, 3-D, ...
torch.rand((2, 3, 4, 1, 5)).cuda(),
torch.rand((1)).cuda()
]
input_names = ['input']
output_names = ['output', 'indices']
for input in input_list:
ndims = input.dim()
# valid dim range is [-ndims, ndims-1]
# test for all `dim` value which is valid
for dim in range(-ndims, ndims):
cummax_func = partial(func, dim=dim)
wrapped_model = WrapFunction(cummax_func).eval().cuda()
with torch.no_grad():
torch.onnx.export(
wrapped_model,
input,
onnx_file,
export_params=True,
keep_initializers_as_inputs=False,
input_names=input_names,
output_names=output_names,
opset_version=opset)
onnx_model = onnx.load(onnx_file)
# create trt engine and wraper
opt_shape_dict = {
'input':
[list(input.shape),
list(input.shape),
list(input.shape)]
}
# trt config
fp16_mode = False
max_workspace_size = 1 << 30
trt_engine = onnx2trt(
onnx_model,
opt_shape_dict,
fp16_mode=fp16_mode,
max_workspace_size=max_workspace_size)
# remove ONNX model after conversion
if os.path.exists(onnx_file):
os.remove(onnx_file)
# save TensorRT model
save_trt_engine(trt_engine, trt_file)
# load and wrap TensorRT model
trt_model = TRTWraper(trt_file)
# remove trt model after loading
if os.path.exists(trt_file):
os.remove(trt_file)
# compute trt output
with torch.no_grad():
trt_results = trt_model({'input': input.contiguous().clone()})
trt_output = trt_results['output']
trt_indices = trt_results['indices']
# compute pytorch output
with torch.no_grad():
pytorch_results = wrapped_model(input.clone())
pytorch_output = pytorch_results[0]
pytorch_indices = pytorch_results[1]
torch.testing.assert_allclose(trt_output, pytorch_output)
torch.testing.assert_allclose(trt_indices, pytorch_indices)