diff --git a/README.md b/README.md
index 1a6541a68..407c8672e 100644
--- a/README.md
+++ b/README.md
@@ -20,6 +20,7 @@
[](https://mmcv.readthedocs.io/en/latest/)
+[](https://mmcv.readthedocs.io/en/latest/get_started/installation.html)
[](https://pypi.org/project/mmcv/)
[](https://pypi.org/project/mmcv)
[](https://github.com/open-mmlab/mmcv/actions)
@@ -30,8 +31,84 @@ English | [简体中文](README_zh-CN.md)
## Introduction
-MMCV is a foundational library for computer vision research and supports many
-research projects as below:
+MMCV is a foundational library for computer vision research and it provides the following functionalities:
+
+- [Universal IO APIs](https://mmcv.readthedocs.io/en/latest/understand_mmcv/io.html)
+- [Image/Video processing](https://mmcv.readthedocs.io/en/latest/understand_mmcv/data_process.html)
+- [Image and annotation visualization](https://mmcv.readthedocs.io/en/latest/understand_mmcv/visualization.html)
+- [Useful utilities (progress bar, timer, ...)](https://mmcv.readthedocs.io/en/latest/understand_mmcv/utils.html)
+- [PyTorch runner with hooking mechanism](https://mmcv.readthedocs.io/en/latest/understand_mmcv/runner.html)
+- [Various CNN architectures](https://mmcv.readthedocs.io/en/latest/understand_mmcv/cnn.html)
+- [High-quality implementation of common CPU and CUDA ops](https://mmcv.readthedocs.io/en/latest/understand_mmcv/ops.html)
+
+It supports the following systems:
+
+- Linux
+- Windows
+- macOS
+
+See the [documentation](http://mmcv.readthedocs.io/en/latest) for more features and usage.
+
+Note: MMCV requires Python 3.6+.
+
+## Installation
+
+There are two versions of MMCV:
+
+- **mmcv-full**: comprehensive, with full features and various CPU and CUDA ops out of the box. It takes longer time to build.
+- **mmcv**: lite, without CPU and CUDA ops but all other features, similar to mmcv\<1.0.0. It is useful when you do not need those CUDA ops.
+
+**Note**: Do not install both versions in the same environment, otherwise you may encounter errors like `ModuleNotFound`. You need to uninstall one before installing the other. `Installing the full version is highly recommended if CUDA is available`.
+
+### Install mmcv-full
+
+Before installing mmcv-full, make sure that PyTorch has been successfully installed following the [PyTorch official installation guide](https://github.com/pytorch/pytorch#installation).
+
+The command to install mmcv-full on Linux or Windows platforms is as follows (if your system is macOS, please refer to [build mmcv-full from source](https://mmcv.readthedocs.io/en/latest/get_started/build.html#macos-mmcv-full))
+
+```bash
+pip install -U openmim
+mim install mmcv-full
+```
+
+If you need to specify the version of mmcv-full, you can use the following command
+
+```bash
+mim install mmcv-full==1.5.0
+```
+
+If you find that the above installation command does not use a pre-built package ending with `.whl` but a source package ending with `.tar.gz`, you may not have a pre-build package corresponding to the PyTorch or CUDA or mmcv-full version, in which case you can [build mmcv-full from source](https://mmcv.readthedocs.io/en/latest/get_started/build.html).
+
+
+Installation log using pre-built packages
+
+Looking in links: https://download.openmmlab.com/mmcv/dist/cu102/torch1.8.0/index.html
+Collecting mmcv-full
+Downloading https://download.openmmlab.com/mmcv/dist/cu102/torch1.8.0/mmcv_full-1.6.1-cp38-cp38-manylinux1_x86_64.whl
+
+
+
+
+Installation log using source packages
+
+Looking in links: https://download.openmmlab.com/mmcv/dist/cu102/torch1.8.0/index.html
+Collecting mmcv-full==1.6.0
+Downloading mmcv-full-1.6.0.tar.gz
+
+
+
+For more installation methods, please refer to the [Installation documentation](https://mmcv.readthedocs.io/en/latest/get_started/installation.html).
+
+### Install mmcv
+
+If you need to use PyTorch-related modules, make sure PyTorch has been successfully installed in your environment by referring to the [PyTorch official installation guide](https://github.com/pytorch/pytorch#installation).
+
+```bash
+pip install -U openmim
+mim install mmcv
+```
+
+## Supported projects
- [MIM](https://github.com/open-mmlab/mim): MIM installs OpenMMLab packages.
- [MMClassification](https://github.com/open-mmlab/mmclassification): OpenMMLab image classification toolbox and benchmark.
@@ -52,205 +129,9 @@ research projects as below:
- [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab image and video generative models toolbox.
- [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMLab model deployment framework.
-It provides the following functionalities.
-
-- Universal IO APIs
-- Image/Video processing
-- Image and annotation visualization
-- Useful utilities (progress bar, timer, ...)
-- PyTorch runner with hooking mechanism
-- Various CNN architectures
-- High-quality implementation of common CUDA ops
-
-It supports the following systems.
-
-- Linux
-- Windows
-- macOS
-
-See the [documentation](http://mmcv.readthedocs.io/en/latest) for more features and usage.
-
-Note: MMCV requires Python 3.6+.
-
-## Installation
-
-There are two versions of MMCV:
-
-- **mmcv-full**: comprehensive, with full features and various CUDA ops out of box. It takes longer time to build.
-- **mmcv**: lite, without CUDA ops but all other features, similar to mmcv\<1.0.0. It is useful when you do not need those CUDA ops.
-
-**Note**: Do not install both versions in the same environment, otherwise you may encounter errors like `ModuleNotFound`. You need to uninstall one before installing the other. `Installing the full version is highly recommended if CUDA is available`.
-
-a. Install the full version.
-
-Before installing mmcv-full, make sure that PyTorch has been successfully installed following the [official guide](https://pytorch.org/).
-
-We provide pre-built mmcv packages (recommended) with different PyTorch and CUDA versions to simplify the building for **Linux and Windows systems**. In addition, you can run [check_installation.py](.dev_scripts/check_installation.py) to check the installation of mmcv-full after running the installation commands.
-
-i. Install the latest version.
-
-The rule for installing the latest `mmcv-full` is as follows:
-
-```shell
-pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/{cu_version}/{torch_version}/index.html
-```
-
-Please replace `{cu_version}` and `{torch_version}` in the url to your desired one. For example,
-to install the latest `mmcv-full` with `CUDA 11.1` and `PyTorch 1.9.0`, use the following command:
-
-```shell
-pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu111/torch1.9.0/index.html
-```
-
-**Note**: mmcv-full is only compiled on PyTorch 1.x.0 because the compatibility usually holds between 1.x.0 and 1.x.1. If your PyTorch version is 1.x.1, you can install mmcv-full compiled with PyTorch 1.x.0 and it usually works well. For example, if your PyTorch version is 1.8.1 and CUDA version is 11.1, you can use the following command to install mmcv-full.
-
-```shell
-pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu111/torch1.8.0/index.html
-```
-
-For more details, please refer the the following tables and delete `=={mmcv_version}`.
-
-ii. Install a specified version.
-
-The rule for installing a specified `mmcv-full` is as follows:
-
-```shell
-pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/{cu_version}/{torch_version}/index.html
-```
-
-First of all, please refer to the Releases and replace `{mmcv_version}` a specified one. e.g. `1.3.9`.
-Then replace `{cu_version}` and `{torch_version}` in the url to your desired versions. For example,
-to install `mmcv-full==1.3.9` with `CUDA 11.1` and `PyTorch 1.9.0`, use the following command:
-
-```shell
-pip install mmcv-full==1.3.9 -f https://download.openmmlab.com/mmcv/dist/cu111/torch1.9.0/index.html
-```
-
-For more details, please refer the the following tables.
-
-
diff --git a/docker/release/Dockerfile b/docker/release/Dockerfile
index 493aa6d16..1f10acc2b 100644
--- a/docker/release/Dockerfile
+++ b/docker/release/Dockerfile
@@ -16,5 +16,8 @@ RUN apt-get update && apt-get install -y libgl1 libglib2.0-0 \
&& rm -rf /var/lib/apt/lists/*
# Install mmcv-full
-ARG MMCV="1.5.1"
-RUN pip install openmim && mim install mmcv-full==${MMCV} && python -c 'import mmcv;print(mmcv.__version__)'
+ARG MMCV=""
+RUN if [ "${MMCV}" = "" ]; then pip install -U openmim && mim install mmcv-full; else pip install -U openmim && mim install mmcv-full==${MMCV}; fi
+
+# Verify the installation
+RUN python -c 'import mmcv;print(mmcv.__version__)'
diff --git a/docs/en/_static/version.json b/docs/en/_static/version.json
new file mode 100644
index 000000000..a1643eedb
--- /dev/null
+++ b/docs/en/_static/version.json
@@ -0,0 +1,1931 @@
+{
+ "Linux": [
+ {
+ "cuda": "11.6",
+ "torch": "1.12.x",
+ "mmcv": [
+ "1.6.2",
+ "1.6.1",
+ "1.6.0"
+ ]
+ },
+ {
+ "cuda": "11.5",
+ "torch": "1.11.x",
+ "mmcv": [
+ "1.6.2",
+ "1.6.1",
+ "1.6.0",
+ "1.5.3",
+ "1.5.2",
+ "1.5.1",
+ "1.5.0",
+ "1.4.8",
+ "1.4.7"
+ ]
+ },
+ {
+ "cuda": "11.3",
+ "torch": "1.12.x",
+ "mmcv": [
+ "1.6.2",
+ "1.6.1",
+ "1.6.0"
+ ]
+ },
+ {
+ "cuda": "11.3",
+ "torch": "1.11.x",
+ "mmcv": [
+ "1.6.2",
+ "1.6.1",
+ "1.6.0",
+ "1.5.3",
+ "1.5.2",
+ "1.5.1",
+ "1.5.0",
+ "1.4.8",
+ "1.4.7"
+ ]
+ },
+ {
+ "cuda": "11.3",
+ "torch": "1.10.x",
+ "mmcv": [
+ "1.6.2",
+ "1.6.1",
+ "1.6.0",
+ "1.5.3",
+ "1.5.2",
+ "1.5.1",
+ "1.5.0",
+ "1.4.8",
+ "1.4.7",
+ "1.4.6",
+ "1.4.5",
+ "1.4.4",
+ "1.4.3",
+ "1.4.2",
+ "1.4.1",
+ "1.4.0",
+ "1.3.18",
+ "1.3.17",
+ "1.3.16"
+ ]
+ },
+ {
+ "cuda": "11.1",
+ "torch": "1.10.x",
+ "mmcv": [
+ "1.6.2",
+ "1.6.1",
+ "1.6.0",
+ "1.5.3",
+ "1.5.2",
+ "1.5.1",
+ "1.5.0",
+ "1.4.8",
+ "1.4.7",
+ "1.4.6",
+ "1.4.5",
+ "1.4.4",
+ "1.4.3",
+ "1.4.2",
+ "1.4.1",
+ "1.4.0",
+ "1.3.18",
+ "1.3.17",
+ "1.3.16"
+ ]
+ },
+ {
+ "cuda": "11.1",
+ "torch": "1.9.x",
+ "mmcv": [
+ "1.6.2",
+ "1.6.1",
+ "1.6.0",
+ "1.5.3",
+ "1.5.2",
+ "1.5.1",
+ "1.5.0",
+ "1.4.8",
+ "1.4.7",
+ "1.4.6",
+ "1.4.5",
+ "1.4.4",
+ "1.4.3",
+ "1.4.2",
+ "1.4.1",
+ "1.4.0",
+ "1.3.9",
+ "1.3.18",
+ "1.3.17",
+ "1.3.16",
+ "1.3.15",
+ "1.3.14",
+ "1.3.13",
+ "1.3.12",
+ "1.3.11",
+ "1.3.10"
+ ]
+ },
+ {
+ "cuda": "11.1",
+ "torch": "1.8.x",
+ "mmcv": [
+ "1.6.2",
+ "1.6.1",
+ "1.6.0",
+ "1.5.3",
+ "1.5.2",
+ "1.5.1",
+ "1.5.0",
+ "1.4.8",
+ "1.4.7",
+ "1.4.6",
+ "1.4.5",
+ "1.4.4",
+ "1.4.3",
+ "1.4.2",
+ "1.4.1",
+ "1.4.0",
+ "1.3.9",
+ "1.3.8",
+ "1.3.7",
+ "1.3.6",
+ "1.3.5",
+ "1.3.4",
+ "1.3.3",
+ "1.3.2",
+ "1.3.18",
+ "1.3.17",
+ "1.3.16",
+ "1.3.15",
+ "1.3.14",
+ "1.3.13",
+ "1.3.12",
+ "1.3.11",
+ "1.3.10",
+ "1.3.1",
+ "1.3.0"
+ ]
+ },
+ {
+ "cuda": "11.0",
+ "torch": "1.7.x",
+ "mmcv": [
+ "1.6.2",
+ "1.6.1",
+ "1.6.0",
+ "1.5.3",
+ "1.5.2",
+ "1.5.1",
+ "1.5.0",
+ "1.4.8",
+ "1.4.7",
+ "1.4.6",
+ "1.4.5",
+ "1.4.4",
+ "1.4.3",
+ "1.4.2",
+ "1.4.1",
+ "1.4.0",
+ "1.3.9",
+ "1.3.8",
+ "1.3.7",
+ "1.3.6",
+ "1.3.5",
+ "1.3.4",
+ "1.3.3",
+ "1.3.2",
+ "1.3.18",
+ "1.3.17",
+ "1.3.16",
+ "1.3.15",
+ "1.3.14",
+ "1.3.13",
+ "1.3.12",
+ "1.3.11",
+ "1.3.10",
+ "1.3.1",
+ "1.3.0",
+ "1.2.7",
+ "1.2.6",
+ "1.2.5",
+ "1.2.4",
+ "1.2.3",
+ "1.2.2",
+ "1.2.0"
+ ]
+ },
+ {
+ "cuda": "10.2",
+ "torch": "1.12.x",
+ "mmcv": [
+ "1.6.2",
+ "1.6.1",
+ "1.6.0"
+ ]
+ },
+ {
+ "cuda": "10.2",
+ "torch": "1.11.x",
+ "mmcv": [
+ "1.6.2",
+ "1.6.1",
+ "1.6.0",
+ "1.5.3",
+ "1.5.2",
+ "1.5.1",
+ "1.5.0",
+ "1.4.8",
+ "1.4.7"
+ ]
+ },
+ {
+ "cuda": "10.2",
+ "torch": "1.10.x",
+ "mmcv": [
+ "1.6.2",
+ "1.6.1",
+ "1.6.0",
+ "1.5.3",
+ "1.5.2",
+ "1.5.1",
+ "1.5.0",
+ "1.4.8",
+ "1.4.7",
+ "1.4.6",
+ "1.4.5",
+ "1.4.4",
+ "1.4.3",
+ "1.4.2",
+ "1.4.1",
+ "1.4.0",
+ "1.3.18",
+ "1.3.17",
+ "1.3.16"
+ ]
+ },
+ {
+ "cuda": "10.2",
+ "torch": "1.9.x",
+ "mmcv": [
+ "1.6.2",
+ "1.6.1",
+ "1.6.0",
+ "1.5.3",
+ "1.5.2",
+ "1.5.1",
+ "1.5.0",
+ "1.4.8",
+ "1.4.7",
+ "1.4.6",
+ "1.4.5",
+ "1.4.4",
+ "1.4.3",
+ "1.4.2",
+ "1.4.1",
+ "1.4.0",
+ "1.3.9",
+ "1.3.18",
+ "1.3.17",
+ "1.3.16",
+ "1.3.15",
+ "1.3.14",
+ "1.3.13",
+ "1.3.12",
+ "1.3.11",
+ "1.3.10"
+ ]
+ },
+ {
+ "cuda": "10.2",
+ "torch": "1.8.x",
+ "mmcv": [
+ "1.6.2",
+ "1.6.1",
+ "1.6.0",
+ "1.5.3",
+ "1.5.2",
+ "1.5.1",
+ "1.5.0",
+ "1.4.8",
+ "1.4.7",
+ "1.4.6",
+ "1.4.5",
+ "1.4.4",
+ "1.4.3",
+ "1.4.2",
+ "1.4.1",
+ "1.4.0",
+ "1.3.9",
+ "1.3.8",
+ "1.3.7",
+ "1.3.6",
+ "1.3.5",
+ "1.3.4",
+ "1.3.3",
+ "1.3.2",
+ "1.3.18",
+ "1.3.17",
+ "1.3.16",
+ "1.3.15",
+ "1.3.14",
+ "1.3.13",
+ "1.3.12",
+ "1.3.11",
+ "1.3.10",
+ "1.3.1",
+ "1.3.0"
+ ]
+ },
+ {
+ "cuda": "10.2",
+ "torch": "1.7.x",
+ "mmcv": [
+ "1.6.2",
+ "1.6.1",
+ "1.6.0",
+ "1.5.3",
+ "1.5.2",
+ "1.5.1",
+ "1.5.0",
+ "1.4.8",
+ "1.4.7",
+ "1.4.6",
+ "1.4.5",
+ "1.4.4",
+ "1.4.3",
+ "1.4.2",
+ "1.4.1",
+ "1.4.0",
+ "1.3.9",
+ "1.3.8",
+ "1.3.7",
+ "1.3.6",
+ "1.3.5",
+ "1.3.4",
+ "1.3.3",
+ "1.3.2",
+ "1.3.18",
+ "1.3.17",
+ "1.3.16",
+ "1.3.15",
+ "1.3.14",
+ "1.3.13",
+ "1.3.12",
+ "1.3.11",
+ "1.3.10",
+ "1.3.1",
+ "1.3.0",
+ "1.2.7",
+ "1.2.6",
+ "1.2.5",
+ "1.2.4",
+ "1.2.3",
+ "1.2.2",
+ "1.2.1",
+ "1.2.0"
+ ]
+ },
+ {
+ "cuda": "10.2",
+ "torch": "1.6.x",
+ "mmcv": [
+ "1.6.2",
+ "1.6.1",
+ "1.6.0",
+ "1.5.3",
+ "1.5.2",
+ "1.5.1",
+ "1.5.0",
+ "1.4.8",
+ "1.4.7",
+ "1.4.6",
+ "1.4.5",
+ "1.4.4",
+ "1.4.3",
+ "1.4.2",
+ "1.4.1",
+ "1.4.0",
+ "1.3.9",
+ "1.3.8",
+ "1.3.7",
+ "1.3.6",
+ "1.3.5",
+ "1.3.4",
+ "1.3.3",
+ "1.3.2",
+ "1.3.18",
+ "1.3.17",
+ "1.3.16",
+ "1.3.15",
+ "1.3.14",
+ "1.3.13",
+ "1.3.12",
+ "1.3.11",
+ "1.3.10",
+ "1.3.1",
+ "1.3.0",
+ "1.2.7",
+ "1.2.6",
+ "1.2.5",
+ "1.2.4",
+ "1.2.3",
+ "1.2.2",
+ "1.2.1",
+ "1.2.0",
+ "1.1.6",
+ "1.1.5",
+ "1.1.4",
+ "1.1.3",
+ "1.1.2",
+ "1.1.1",
+ "1.1.0",
+ "1.0.5"
+ ]
+ },
+ {
+ "cuda": "10.2",
+ "torch": "1.5.x",
+ "mmcv": [
+ "1.6.2",
+ "1.6.1",
+ "1.6.0",
+ "1.5.3",
+ "1.5.2",
+ "1.5.1",
+ "1.5.0",
+ "1.4.8",
+ "1.4.7",
+ "1.4.6",
+ "1.4.5",
+ "1.4.4",
+ "1.4.3",
+ "1.4.2",
+ "1.4.1",
+ "1.4.0",
+ "1.3.9",
+ "1.3.8",
+ "1.3.7",
+ "1.3.6",
+ "1.3.5",
+ "1.3.4",
+ "1.3.3",
+ "1.3.2",
+ "1.3.18",
+ "1.3.17",
+ "1.3.16",
+ "1.3.15",
+ "1.3.14",
+ "1.3.13",
+ "1.3.12",
+ "1.3.11",
+ "1.3.10",
+ "1.3.1",
+ "1.3.0",
+ "1.2.7",
+ "1.2.6",
+ "1.2.5",
+ "1.2.4",
+ "1.2.3",
+ "1.2.2",
+ "1.2.1",
+ "1.2.0",
+ "1.1.6",
+ "1.1.5",
+ "1.1.4",
+ "1.1.3",
+ "1.1.2",
+ "1.1.1",
+ "1.1.0",
+ "1.0.5",
+ "1.0.4",
+ "1.0.3",
+ "1.0.2",
+ "1.0.0"
+ ]
+ },
+ {
+ "cuda": "10.1",
+ "torch": "1.8.x",
+ "mmcv": [
+ "1.6.2",
+ "1.6.1",
+ "1.6.0",
+ "1.5.3",
+ "1.5.2",
+ "1.5.1",
+ "1.5.0",
+ "1.4.8",
+ "1.4.7",
+ "1.4.6",
+ "1.4.5",
+ "1.4.4",
+ "1.4.3",
+ "1.4.2",
+ "1.4.1",
+ "1.4.0",
+ "1.3.9",
+ "1.3.8",
+ "1.3.7",
+ "1.3.6",
+ "1.3.5",
+ "1.3.4",
+ "1.3.3",
+ "1.3.2",
+ "1.3.18",
+ "1.3.17",
+ "1.3.16",
+ "1.3.15",
+ "1.3.14",
+ "1.3.13",
+ "1.3.12",
+ "1.3.11",
+ "1.3.10",
+ "1.3.1",
+ "1.3.0"
+ ]
+ },
+ {
+ "cuda": "10.1",
+ "torch": "1.7.x",
+ "mmcv": [
+ "1.6.2",
+ "1.6.1",
+ "1.6.0",
+ "1.5.3",
+ "1.5.2",
+ "1.5.1",
+ "1.5.0",
+ "1.4.8",
+ "1.4.7",
+ "1.4.6",
+ "1.4.5",
+ "1.4.4",
+ "1.4.3",
+ "1.4.2",
+ "1.4.1",
+ "1.4.0",
+ "1.3.9",
+ "1.3.8",
+ "1.3.7",
+ "1.3.6",
+ "1.3.5",
+ "1.3.4",
+ "1.3.3",
+ "1.3.2",
+ "1.3.18",
+ "1.3.17",
+ "1.3.16",
+ "1.3.15",
+ "1.3.14",
+ "1.3.13",
+ "1.3.12",
+ "1.3.11",
+ "1.3.10",
+ "1.3.1",
+ "1.3.0",
+ "1.2.7",
+ "1.2.6",
+ "1.2.5",
+ "1.2.4",
+ "1.2.3",
+ "1.2.2",
+ "1.2.1",
+ "1.2.0"
+ ]
+ },
+ {
+ "cuda": "10.1",
+ "torch": "1.6.x",
+ "mmcv": [
+ "1.6.2",
+ "1.6.1",
+ "1.6.0",
+ "1.5.3",
+ "1.5.2",
+ "1.5.1",
+ "1.5.0",
+ "1.4.8",
+ "1.4.7",
+ "1.4.6",
+ "1.4.5",
+ "1.4.4",
+ "1.4.3",
+ "1.4.2",
+ "1.4.1",
+ "1.4.0",
+ "1.3.9",
+ "1.3.8",
+ "1.3.7",
+ "1.3.6",
+ "1.3.5",
+ "1.3.4",
+ "1.3.3",
+ "1.3.2",
+ "1.3.18",
+ "1.3.17",
+ "1.3.16",
+ "1.3.15",
+ "1.3.14",
+ "1.3.13",
+ "1.3.12",
+ "1.3.11",
+ "1.3.10",
+ "1.3.1",
+ "1.3.0",
+ "1.2.7",
+ "1.2.6",
+ "1.2.5",
+ "1.2.4",
+ "1.2.3",
+ "1.2.2",
+ "1.2.1",
+ "1.2.0",
+ "1.1.6",
+ "1.1.5",
+ "1.1.4",
+ "1.1.3",
+ "1.1.2",
+ "1.1.1",
+ "1.1.0",
+ "1.0.5"
+ ]
+ },
+ {
+ "cuda": "10.1",
+ "torch": "1.5.x",
+ "mmcv": [
+ "1.6.2",
+ "1.6.1",
+ "1.6.0",
+ "1.5.3",
+ "1.5.2",
+ "1.5.1",
+ "1.5.0",
+ "1.4.8",
+ "1.4.7",
+ "1.4.6",
+ "1.4.5",
+ "1.4.4",
+ "1.4.3",
+ "1.4.2",
+ "1.4.1",
+ "1.4.0",
+ "1.3.9",
+ "1.3.8",
+ "1.3.7",
+ "1.3.6",
+ "1.3.5",
+ "1.3.4",
+ "1.3.3",
+ "1.3.2",
+ "1.3.18",
+ "1.3.17",
+ "1.3.16",
+ "1.3.15",
+ "1.3.14",
+ "1.3.13",
+ "1.3.12",
+ "1.3.11",
+ "1.3.10",
+ "1.3.1",
+ "1.3.0",
+ "1.2.7",
+ "1.2.6",
+ "1.2.5",
+ "1.2.4",
+ "1.2.3",
+ "1.2.2",
+ "1.2.1",
+ "1.2.0",
+ "1.1.6",
+ "1.1.5",
+ "1.1.4",
+ "1.1.3",
+ "1.1.2",
+ "1.1.1",
+ "1.1.0",
+ "1.0.5",
+ "1.0.4",
+ "1.0.3",
+ "1.0.2",
+ "1.0.0"
+ ]
+ },
+ {
+ "cuda": "10.1",
+ "torch": "1.4.x",
+ "mmcv": [
+ "1.2.1",
+ "1.2.0",
+ "1.1.6",
+ "1.1.5",
+ "1.1.4",
+ "1.1.3",
+ "1.1.2",
+ "1.1.1",
+ "1.1.0",
+ "1.0.5",
+ "1.0.4",
+ "1.0.3",
+ "1.0.2",
+ "1.0.0"
+ ]
+ },
+ {
+ "cuda": "10.1",
+ "torch": "1.3.x",
+ "mmcv": [
+ "1.3.9",
+ "1.3.8",
+ "1.3.7",
+ "1.3.6",
+ "1.3.5",
+ "1.3.4",
+ "1.3.3",
+ "1.3.2",
+ "1.3.16",
+ "1.3.15",
+ "1.3.14",
+ "1.3.13",
+ "1.3.12",
+ "1.3.11",
+ "1.3.10",
+ "1.3.1",
+ "1.3.0",
+ "1.2.7",
+ "1.2.6",
+ "1.2.5",
+ "1.2.4",
+ "1.2.3",
+ "1.2.1",
+ "1.2.0",
+ "1.1.6",
+ "1.1.5",
+ "1.1.4",
+ "1.1.3",
+ "1.1.2",
+ "1.1.1",
+ "1.1.0",
+ "1.0.5",
+ "1.0.4",
+ "1.0.3",
+ "1.0.2",
+ "1.0.1",
+ "1.0.0"
+ ]
+ },
+ {
+ "cuda": "10.0",
+ "torch": "1.4.x",
+ "mmcv": [
+ "1.2.1",
+ "1.2.0",
+ "1.1.6",
+ "1.1.5",
+ "1.1.4",
+ "1.1.3",
+ "1.1.2",
+ "1.1.1",
+ "1.1.0",
+ "1.0.4",
+ "1.0.3",
+ "1.0.2",
+ "1.0.0"
+ ]
+ },
+ {
+ "cuda": "10.0",
+ "torch": "1.3.x",
+ "mmcv": [
+ "1.3.9",
+ "1.3.8",
+ "1.3.7",
+ "1.3.6",
+ "1.3.5",
+ "1.3.4",
+ "1.3.3",
+ "1.3.2",
+ "1.3.16",
+ "1.3.15",
+ "1.3.14",
+ "1.3.13",
+ "1.3.12",
+ "1.3.11",
+ "1.3.10",
+ "1.3.1",
+ "1.3.0",
+ "1.2.7",
+ "1.2.6",
+ "1.2.5",
+ "1.2.4",
+ "1.2.3",
+ "1.2.1",
+ "1.2.0",
+ "1.1.6",
+ "1.1.5",
+ "1.1.4",
+ "1.1.3",
+ "1.1.2",
+ "1.1.1",
+ "1.1.0",
+ "1.0.5",
+ "1.0.4",
+ "1.0.3",
+ "1.0.2",
+ "1.0.1",
+ "1.0.0"
+ ]
+ },
+ {
+ "cuda": "9.2",
+ "torch": "1.7.x",
+ "mmcv": [
+ "1.6.2",
+ "1.6.1",
+ "1.6.0",
+ "1.5.3",
+ "1.5.2",
+ "1.5.1",
+ "1.5.0",
+ "1.4.8",
+ "1.4.7",
+ "1.4.6",
+ "1.4.5",
+ "1.4.4",
+ "1.4.3",
+ "1.4.2",
+ "1.4.1",
+ "1.4.0",
+ "1.3.9",
+ "1.3.8",
+ "1.3.7",
+ "1.3.6",
+ "1.3.5",
+ "1.3.4",
+ "1.3.3",
+ "1.3.2",
+ "1.3.18",
+ "1.3.17",
+ "1.3.16",
+ "1.3.15",
+ "1.3.14",
+ "1.3.13",
+ "1.3.12",
+ "1.3.11",
+ "1.3.10",
+ "1.3.1",
+ "1.3.0",
+ "1.2.7",
+ "1.2.6",
+ "1.2.5",
+ "1.2.4",
+ "1.2.3",
+ "1.2.2",
+ "1.2.1",
+ "1.2.0"
+ ]
+ },
+ {
+ "cuda": "9.2",
+ "torch": "1.6.x",
+ "mmcv": [
+ "1.6.2",
+ "1.6.1",
+ "1.6.0",
+ "1.5.3",
+ "1.5.2",
+ "1.5.1",
+ "1.5.0",
+ "1.4.8",
+ "1.4.7",
+ "1.4.6",
+ "1.4.5",
+ "1.4.4",
+ "1.4.3",
+ "1.4.2",
+ "1.4.1",
+ "1.4.0",
+ "1.3.9",
+ "1.3.8",
+ "1.3.7",
+ "1.3.6",
+ "1.3.5",
+ "1.3.4",
+ "1.3.3",
+ "1.3.2",
+ "1.3.18",
+ "1.3.17",
+ "1.3.16",
+ "1.3.15",
+ "1.3.14",
+ "1.3.13",
+ "1.3.12",
+ "1.3.11",
+ "1.3.10",
+ "1.3.1",
+ "1.3.0",
+ "1.2.7",
+ "1.2.6",
+ "1.2.5",
+ "1.2.4",
+ "1.2.3",
+ "1.2.2",
+ "1.2.1",
+ "1.2.0",
+ "1.1.6",
+ "1.1.5",
+ "1.1.4",
+ "1.1.3",
+ "1.1.2",
+ "1.1.1",
+ "1.1.0",
+ "1.0.5"
+ ]
+ },
+ {
+ "cuda": "9.2",
+ "torch": "1.5.x",
+ "mmcv": [
+ "1.6.2",
+ "1.6.1",
+ "1.6.0",
+ "1.5.3",
+ "1.5.2",
+ "1.5.1",
+ "1.5.0",
+ "1.4.8",
+ "1.4.7",
+ "1.4.6",
+ "1.4.5",
+ "1.4.4",
+ "1.4.3",
+ "1.4.2",
+ "1.4.1",
+ "1.4.0",
+ "1.3.9",
+ "1.3.8",
+ "1.3.7",
+ "1.3.6",
+ "1.3.5",
+ "1.3.4",
+ "1.3.3",
+ "1.3.2",
+ "1.3.18",
+ "1.3.17",
+ "1.3.16",
+ "1.3.15",
+ "1.3.14",
+ "1.3.13",
+ "1.3.12",
+ "1.3.11",
+ "1.3.10",
+ "1.3.1",
+ "1.3.0",
+ "1.2.7",
+ "1.2.6",
+ "1.2.5",
+ "1.2.4",
+ "1.2.3",
+ "1.2.2",
+ "1.2.1",
+ "1.2.0",
+ "1.1.6",
+ "1.1.5",
+ "1.1.4",
+ "1.1.3",
+ "1.1.2",
+ "1.1.1",
+ "1.1.0",
+ "1.0.5",
+ "1.0.4",
+ "1.0.3",
+ "1.0.2",
+ "1.0.0"
+ ]
+ },
+ {
+ "cuda": "9.2",
+ "torch": "1.4.x",
+ "mmcv": [
+ "1.2.1",
+ "1.2.0",
+ "1.1.6",
+ "1.1.5",
+ "1.1.4",
+ "1.1.3",
+ "1.1.2",
+ "1.1.1",
+ "1.1.0",
+ "1.0.4",
+ "1.0.3",
+ "1.0.2",
+ "1.0.0"
+ ]
+ },
+ {
+ "cuda": "9.2",
+ "torch": "1.3.x",
+ "mmcv": [
+ "1.3.9",
+ "1.3.8",
+ "1.3.7",
+ "1.3.6",
+ "1.3.5",
+ "1.3.4",
+ "1.3.3",
+ "1.3.2",
+ "1.3.16",
+ "1.3.15",
+ "1.3.14",
+ "1.3.13",
+ "1.3.12",
+ "1.3.11",
+ "1.3.10",
+ "1.3.1",
+ "1.3.0",
+ "1.2.7",
+ "1.2.6",
+ "1.2.5",
+ "1.2.4",
+ "1.2.3",
+ "1.2.1",
+ "1.2.0",
+ "1.1.6",
+ "1.1.5",
+ "1.1.4",
+ "1.1.3",
+ "1.1.2",
+ "1.1.1",
+ "1.1.0",
+ "1.0.5",
+ "1.0.4",
+ "1.0.3",
+ "1.0.2",
+ "1.0.1",
+ "1.0.0"
+ ]
+ },
+ {
+ "cuda": "cpu",
+ "torch": "1.12.x",
+ "mmcv": [
+ "1.6.2",
+ "1.6.1",
+ "1.6.0"
+ ]
+ },
+ {
+ "cuda": "cpu",
+ "torch": "1.11.x",
+ "mmcv": [
+ "1.6.2",
+ "1.6.1",
+ "1.6.0",
+ "1.5.3",
+ "1.5.2",
+ "1.5.1",
+ "1.5.0",
+ "1.4.8",
+ "1.4.7"
+ ]
+ },
+ {
+ "cuda": "cpu",
+ "torch": "1.10.x",
+ "mmcv": [
+ "1.6.2",
+ "1.6.1",
+ "1.6.0",
+ "1.5.3",
+ "1.5.2",
+ "1.5.1",
+ "1.5.0",
+ "1.4.8",
+ "1.4.7",
+ "1.4.6",
+ "1.4.5",
+ "1.4.4",
+ "1.4.3",
+ "1.4.2",
+ "1.4.1",
+ "1.4.0",
+ "1.3.18",
+ "1.3.17",
+ "1.3.16"
+ ]
+ },
+ {
+ "cuda": "cpu",
+ "torch": "1.9.x",
+ "mmcv": [
+ "1.6.2",
+ "1.6.1",
+ "1.6.0",
+ "1.5.3",
+ "1.5.2",
+ "1.5.1",
+ "1.5.0",
+ "1.4.8",
+ "1.4.7",
+ "1.4.6",
+ "1.4.5",
+ "1.4.4",
+ "1.4.3",
+ "1.4.2",
+ "1.4.1",
+ "1.4.0",
+ "1.3.9",
+ "1.3.18",
+ "1.3.17",
+ "1.3.16",
+ "1.3.15",
+ "1.3.14",
+ "1.3.13",
+ "1.3.12",
+ "1.3.11",
+ "1.3.10"
+ ]
+ },
+ {
+ "cuda": "cpu",
+ "torch": "1.8.x",
+ "mmcv": [
+ "1.6.2",
+ "1.6.1",
+ "1.6.0",
+ "1.5.3",
+ "1.5.2",
+ "1.5.1",
+ "1.5.0",
+ "1.4.8",
+ "1.4.7",
+ "1.4.6",
+ "1.4.5",
+ "1.4.4",
+ "1.4.3",
+ "1.4.2",
+ "1.4.1",
+ "1.4.0",
+ "1.3.9",
+ "1.3.8",
+ "1.3.7",
+ "1.3.6",
+ "1.3.5",
+ "1.3.4",
+ "1.3.3",
+ "1.3.2",
+ "1.3.18",
+ "1.3.17",
+ "1.3.16",
+ "1.3.15",
+ "1.3.14",
+ "1.3.13",
+ "1.3.12",
+ "1.3.11",
+ "1.3.10",
+ "1.3.1",
+ "1.3.0"
+ ]
+ },
+ {
+ "cuda": "cpu",
+ "torch": "1.7.x",
+ "mmcv": [
+ "1.6.2",
+ "1.6.1",
+ "1.6.0",
+ "1.5.3",
+ "1.5.2",
+ "1.5.1",
+ "1.5.0",
+ "1.4.8",
+ "1.4.7",
+ "1.4.6",
+ "1.4.5",
+ "1.4.4",
+ "1.4.3",
+ "1.4.2",
+ "1.4.1",
+ "1.4.0",
+ "1.3.9",
+ "1.3.8",
+ "1.3.7",
+ "1.3.6",
+ "1.3.5",
+ "1.3.4",
+ "1.3.3",
+ "1.3.2",
+ "1.3.18",
+ "1.3.17",
+ "1.3.16",
+ "1.3.15",
+ "1.3.14",
+ "1.3.13",
+ "1.3.12",
+ "1.3.11",
+ "1.3.10",
+ "1.3.1",
+ "1.3.0",
+ "1.2.7",
+ "1.2.6",
+ "1.2.5",
+ "1.2.4",
+ "1.2.3",
+ "1.2.2",
+ "1.2.1",
+ "1.2.0"
+ ]
+ },
+ {
+ "cuda": "cpu",
+ "torch": "1.6.x",
+ "mmcv": [
+ "1.6.2",
+ "1.6.1",
+ "1.6.0",
+ "1.5.3",
+ "1.5.2",
+ "1.5.1",
+ "1.5.0",
+ "1.4.8",
+ "1.4.7",
+ "1.4.6",
+ "1.4.5",
+ "1.4.4",
+ "1.4.3",
+ "1.4.2",
+ "1.4.1",
+ "1.4.0",
+ "1.3.9",
+ "1.3.8",
+ "1.3.7",
+ "1.3.6",
+ "1.3.5",
+ "1.3.4",
+ "1.3.3",
+ "1.3.2",
+ "1.3.18",
+ "1.3.17",
+ "1.3.16",
+ "1.3.15",
+ "1.3.14",
+ "1.3.13",
+ "1.3.12",
+ "1.3.11",
+ "1.3.10",
+ "1.3.1",
+ "1.3.0",
+ "1.2.7",
+ "1.2.6",
+ "1.2.5",
+ "1.2.4",
+ "1.2.3",
+ "1.2.2",
+ "1.2.1",
+ "1.2.0",
+ "1.1.6",
+ "1.1.5",
+ "1.1.4",
+ "1.1.3",
+ "1.1.2",
+ "1.1.1",
+ "1.1.0",
+ "1.0.5"
+ ]
+ },
+ {
+ "cuda": "cpu",
+ "torch": "1.5.x",
+ "mmcv": [
+ "1.6.2",
+ "1.6.1",
+ "1.6.0",
+ "1.5.3",
+ "1.5.2",
+ "1.5.1",
+ "1.5.0",
+ "1.4.8",
+ "1.4.7",
+ "1.4.6",
+ "1.4.5",
+ "1.4.4",
+ "1.4.3",
+ "1.4.2",
+ "1.4.1",
+ "1.4.0",
+ "1.3.9",
+ "1.3.8",
+ "1.3.7",
+ "1.3.6",
+ "1.3.5",
+ "1.3.4",
+ "1.3.3",
+ "1.3.2",
+ "1.3.18",
+ "1.3.17",
+ "1.3.16",
+ "1.3.15",
+ "1.3.14",
+ "1.3.13",
+ "1.3.12",
+ "1.3.11",
+ "1.3.10",
+ "1.3.1",
+ "1.3.0",
+ "1.2.7",
+ "1.2.6",
+ "1.2.5",
+ "1.2.4",
+ "1.2.3",
+ "1.2.2",
+ "1.2.1",
+ "1.2.0",
+ "1.1.6",
+ "1.1.5",
+ "1.1.4",
+ "1.1.3",
+ "1.1.2",
+ "1.1.1",
+ "1.1.0",
+ "1.0.5",
+ "1.0.4",
+ "1.0.3",
+ "1.0.2",
+ "1.0.0"
+ ]
+ },
+ {
+ "cuda": "cpu",
+ "torch": "1.4.x",
+ "mmcv": [
+ "1.2.1",
+ "1.2.0",
+ "1.1.6",
+ "1.1.5",
+ "1.1.4",
+ "1.1.3",
+ "1.1.2",
+ "1.1.1",
+ "1.1.0",
+ "1.0.5",
+ "1.0.4",
+ "1.0.3",
+ "1.0.2",
+ "1.0.0"
+ ]
+ },
+ {
+ "cuda": "cpu",
+ "torch": "1.3.x",
+ "mmcv": [
+ "1.3.9",
+ "1.3.8",
+ "1.3.7",
+ "1.3.6",
+ "1.3.5",
+ "1.3.4",
+ "1.3.3",
+ "1.3.2",
+ "1.3.16",
+ "1.3.15",
+ "1.3.14",
+ "1.3.13",
+ "1.3.12",
+ "1.3.11",
+ "1.3.10",
+ "1.3.1",
+ "1.3.0",
+ "1.2.7",
+ "1.2.6",
+ "1.2.5",
+ "1.2.4",
+ "1.2.3",
+ "1.2.1",
+ "1.2.0",
+ "1.1.6",
+ "1.1.5",
+ "1.1.4",
+ "1.1.3",
+ "1.1.2",
+ "1.1.1",
+ "1.1.0",
+ "1.0.5",
+ "1.0.4",
+ "1.0.3",
+ "1.0.2",
+ "1.0.1",
+ "1.0.0"
+ ]
+ }
+ ],
+ "Windows": [
+ {
+ "cuda": "11.6",
+ "torch": "1.12.x",
+ "mmcv": [
+ "1.6.2",
+ "1.6.1",
+ "1.6.0"
+ ]
+ },
+ {
+ "cuda": "11.5",
+ "torch": "1.11.x",
+ "mmcv": [
+ "1.6.2",
+ "1.6.1",
+ "1.6.0",
+ "1.5.3",
+ "1.5.2",
+ "1.5.1",
+ "1.5.0",
+ "1.4.8",
+ "1.4.7"
+ ]
+ },
+ {
+ "cuda": "11.3",
+ "torch": "1.12.x",
+ "mmcv": [
+ "1.6.2",
+ "1.6.1",
+ "1.6.0"
+ ]
+ },
+ {
+ "cuda": "11.3",
+ "torch": "1.11.x",
+ "mmcv": [
+ "1.6.2",
+ "1.6.1",
+ "1.6.0",
+ "1.5.3",
+ "1.5.2",
+ "1.5.1",
+ "1.5.0",
+ "1.4.8",
+ "1.4.7"
+ ]
+ },
+ {
+ "cuda": "11.3",
+ "torch": "1.10.x",
+ "mmcv": [
+ "1.6.2",
+ "1.6.1",
+ "1.6.0",
+ "1.5.3",
+ "1.5.2",
+ "1.5.1",
+ "1.5.0",
+ "1.4.8",
+ "1.4.7",
+ "1.4.6",
+ "1.4.5",
+ "1.4.4",
+ "1.4.3",
+ "1.4.2",
+ "1.4.1",
+ "1.4.0"
+ ]
+ },
+ {
+ "cuda": "11.1",
+ "torch": "1.10.x",
+ "mmcv": [
+ "1.6.2",
+ "1.6.1",
+ "1.6.0",
+ "1.5.3",
+ "1.5.2",
+ "1.5.1",
+ "1.5.0",
+ "1.4.8",
+ "1.4.7",
+ "1.4.6",
+ "1.4.5",
+ "1.4.4",
+ "1.4.3",
+ "1.4.2",
+ "1.4.1",
+ "1.4.0"
+ ]
+ },
+ {
+ "cuda": "11.1",
+ "torch": "1.9.x",
+ "mmcv": [
+ "1.6.2",
+ "1.6.1",
+ "1.6.0",
+ "1.5.3",
+ "1.5.2",
+ "1.5.1",
+ "1.5.0",
+ "1.4.8",
+ "1.4.7",
+ "1.4.6",
+ "1.4.5",
+ "1.4.4",
+ "1.4.3",
+ "1.4.2",
+ "1.4.1",
+ "1.4.0"
+ ]
+ },
+ {
+ "cuda": "11.1",
+ "torch": "1.8.x",
+ "mmcv": [
+ "1.6.2",
+ "1.6.1",
+ "1.6.0",
+ "1.5.3",
+ "1.5.2",
+ "1.5.1",
+ "1.5.0",
+ "1.4.8",
+ "1.4.7",
+ "1.4.6",
+ "1.4.5",
+ "1.4.4",
+ "1.4.3",
+ "1.4.2",
+ "1.4.1",
+ "1.4.0"
+ ]
+ },
+ {
+ "cuda": "10.2",
+ "torch": "1.10.x",
+ "mmcv": [
+ "1.6.2",
+ "1.6.1",
+ "1.6.0",
+ "1.5.3",
+ "1.5.2",
+ "1.5.1",
+ "1.5.0",
+ "1.4.8",
+ "1.4.7",
+ "1.4.6",
+ "1.4.5",
+ "1.4.4",
+ "1.4.3",
+ "1.4.2",
+ "1.4.1",
+ "1.4.0"
+ ]
+ },
+ {
+ "cuda": "10.2",
+ "torch": "1.9.x",
+ "mmcv": [
+ "1.6.2",
+ "1.6.1",
+ "1.6.0",
+ "1.5.3",
+ "1.5.2",
+ "1.5.1",
+ "1.5.0",
+ "1.4.8",
+ "1.4.7",
+ "1.4.6",
+ "1.4.5",
+ "1.4.4",
+ "1.4.3",
+ "1.4.2",
+ "1.4.1",
+ "1.4.0"
+ ]
+ },
+ {
+ "cuda": "10.2",
+ "torch": "1.8.x",
+ "mmcv": [
+ "1.6.2",
+ "1.6.1",
+ "1.6.0",
+ "1.5.3",
+ "1.5.2",
+ "1.5.1",
+ "1.5.0",
+ "1.4.8",
+ "1.4.7",
+ "1.4.6",
+ "1.4.5",
+ "1.4.4",
+ "1.4.3",
+ "1.4.2",
+ "1.4.1",
+ "1.4.0"
+ ]
+ },
+ {
+ "cuda": "10.2",
+ "torch": "1.7.x",
+ "mmcv": [
+ "1.4.5",
+ "1.4.4",
+ "1.4.3",
+ "1.4.2",
+ "1.4.1",
+ "1.4.0"
+ ]
+ },
+ {
+ "cuda": "10.2",
+ "torch": "1.6.x",
+ "mmcv": [
+ "1.6.2",
+ "1.6.1",
+ "1.6.0",
+ "1.5.3",
+ "1.5.2",
+ "1.5.1",
+ "1.5.0",
+ "1.4.8",
+ "1.4.7",
+ "1.4.6",
+ "1.4.5",
+ "1.4.4",
+ "1.4.3",
+ "1.4.2",
+ "1.4.1",
+ "1.4.0",
+ "1.1.5",
+ "1.1.3"
+ ]
+ },
+ {
+ "cuda": "10.2",
+ "torch": "1.5.x",
+ "mmcv": [
+ "1.6.2",
+ "1.6.1",
+ "1.6.0",
+ "1.5.3",
+ "1.5.2",
+ "1.5.1",
+ "1.5.0",
+ "1.4.8",
+ "1.4.6",
+ "1.4.5",
+ "1.4.4",
+ "1.4.3",
+ "1.4.2",
+ "1.4.1",
+ "1.4.0"
+ ]
+ },
+ {
+ "cuda": "10.1",
+ "torch": "1.8.x",
+ "mmcv": [
+ "1.6.2",
+ "1.6.1",
+ "1.6.0",
+ "1.5.3",
+ "1.5.2",
+ "1.5.1",
+ "1.5.0",
+ "1.4.8",
+ "1.4.6",
+ "1.4.5",
+ "1.4.4",
+ "1.4.3",
+ "1.4.2",
+ "1.4.1",
+ "1.4.0"
+ ]
+ },
+ {
+ "cuda": "10.1",
+ "torch": "1.7.x",
+ "mmcv": [
+ "1.4.5",
+ "1.4.4",
+ "1.4.3",
+ "1.4.2",
+ "1.4.1",
+ "1.4.0"
+ ]
+ },
+ {
+ "cuda": "10.1",
+ "torch": "1.6.x",
+ "mmcv": [
+ "1.6.2",
+ "1.6.1",
+ "1.6.0",
+ "1.5.3",
+ "1.5.2",
+ "1.5.1",
+ "1.5.0",
+ "1.4.8",
+ "1.4.7",
+ "1.4.6",
+ "1.4.5",
+ "1.4.4",
+ "1.4.3",
+ "1.4.2",
+ "1.4.1",
+ "1.4.0",
+ "1.1.5",
+ "1.1.3"
+ ]
+ },
+ {
+ "cuda": "10.1",
+ "torch": "1.5.x",
+ "mmcv": [
+ "1.6.2",
+ "1.6.1",
+ "1.6.0",
+ "1.5.3",
+ "1.5.2",
+ "1.5.1",
+ "1.5.0",
+ "1.4.8",
+ "1.4.7",
+ "1.4.6",
+ "1.4.5",
+ "1.4.4",
+ "1.4.3",
+ "1.4.2",
+ "1.4.1",
+ "1.4.0"
+ ]
+ },
+ {
+ "cuda": "cpu",
+ "torch": "1.12.x",
+ "mmcv": [
+ "1.6.2",
+ "1.6.1",
+ "1.6.0"
+ ]
+ },
+ {
+ "cuda": "cpu",
+ "torch": "1.11.x",
+ "mmcv": [
+ "1.6.2",
+ "1.6.1",
+ "1.6.0",
+ "1.5.3",
+ "1.5.2",
+ "1.5.1",
+ "1.5.0",
+ "1.4.8",
+ "1.4.7"
+ ]
+ },
+ {
+ "cuda": "cpu",
+ "torch": "1.10.x",
+ "mmcv": [
+ "1.6.2",
+ "1.6.1",
+ "1.6.0",
+ "1.5.3",
+ "1.5.2",
+ "1.5.1",
+ "1.5.0",
+ "1.4.8",
+ "1.4.7",
+ "1.4.6",
+ "1.4.5",
+ "1.4.4",
+ "1.4.3",
+ "1.4.2",
+ "1.4.1",
+ "1.4.0"
+ ]
+ },
+ {
+ "cuda": "cpu",
+ "torch": "1.9.x",
+ "mmcv": [
+ "1.6.2",
+ "1.6.1",
+ "1.6.0",
+ "1.5.3",
+ "1.5.2",
+ "1.5.1",
+ "1.5.0",
+ "1.4.8",
+ "1.4.7",
+ "1.4.6",
+ "1.4.5",
+ "1.4.4",
+ "1.4.3",
+ "1.4.2",
+ "1.4.1",
+ "1.4.0"
+ ]
+ },
+ {
+ "cuda": "cpu",
+ "torch": "1.8.x",
+ "mmcv": [
+ "1.6.2",
+ "1.6.1",
+ "1.6.0",
+ "1.5.3",
+ "1.5.2",
+ "1.5.1",
+ "1.5.0",
+ "1.4.8",
+ "1.4.7",
+ "1.4.6",
+ "1.4.5",
+ "1.4.4",
+ "1.4.3",
+ "1.4.2",
+ "1.4.1",
+ "1.4.0"
+ ]
+ },
+ {
+ "cuda": "cpu",
+ "torch": "1.7.x",
+ "mmcv": [
+ "1.6.2",
+ "1.6.1",
+ "1.6.0",
+ "1.5.3",
+ "1.5.2",
+ "1.5.1",
+ "1.5.0",
+ "1.4.8",
+ "1.4.7",
+ "1.4.6",
+ "1.4.5",
+ "1.4.4",
+ "1.4.3",
+ "1.4.2",
+ "1.4.1",
+ "1.4.0"
+ ]
+ },
+ {
+ "cuda": "cpu",
+ "torch": "1.6.x",
+ "mmcv": [
+ "1.6.2",
+ "1.6.1",
+ "1.6.0",
+ "1.5.3",
+ "1.5.2",
+ "1.5.1",
+ "1.5.0",
+ "1.4.8",
+ "1.4.7",
+ "1.4.6",
+ "1.4.5",
+ "1.4.4",
+ "1.4.3",
+ "1.4.2",
+ "1.4.1",
+ "1.4.0",
+ "1.1.5",
+ "1.1.3"
+ ]
+ },
+ {
+ "cuda": "cpu",
+ "torch": "1.5.x",
+ "mmcv": [
+ "1.6.2",
+ "1.6.1",
+ "1.6.0",
+ "1.5.3",
+ "1.5.2",
+ "1.5.1",
+ "1.5.0",
+ "1.4.8",
+ "1.4.7",
+ "1.4.6",
+ "1.4.5",
+ "1.4.4",
+ "1.4.3",
+ "1.4.2",
+ "1.4.1",
+ "1.4.0"
+ ]
+ },
+ {
+ "cuda": "cpu",
+ "torch": "1.4.x",
+ "mmcv": [
+ "1.1.5"
+ ]
+ }
+ ]
+}
diff --git a/docs/en/conf.py b/docs/en/conf.py
index e38dfab1d..08f5f7eb7 100644
--- a/docs/en/conf.py
+++ b/docs/en/conf.py
@@ -56,6 +56,8 @@ extensions = [
myst_heading_anchors = 4
+myst_enable_extensions = ['colon_fence']
+
autodoc_mock_imports = ['mmcv._ext', 'mmcv.utils.ext_loader', 'torchvision']
# Add any paths that contain templates here, relative to this directory.
diff --git a/docs/en/get_started/build.md b/docs/en/get_started/build.md
index d987c1e17..c03bea591 100644
--- a/docs/en/get_started/build.md
+++ b/docs/en/get_started/build.md
@@ -1,44 +1,18 @@
## Build MMCV from source
-### Build on Linux or macOS
+### Build mmcv-full
-After cloning the repo with
+Before installing mmcv-full, make sure that PyTorch has been successfully installed following the [PyTorch official installation guide](https://pytorch.org/get-started/locally/#start-locally). This can be verified using the following command
```bash
-git clone https://github.com/open-mmlab/mmcv.git
-cd mmcv
+python -c 'import torch;print(torch.__version__)'
```
-It is recommended to install `ninja` to speed up the compilation
+If version information is output, then PyTorch is installed.
-```bash
-pip install -r requirements/optional.txt
-```
-
-You can either
-
-- install the lite version
-
- ```bash
- pip install -e .
- ```
-
-- install the full version
-
- ```bash
- MMCV_WITH_OPS=1 pip install -e .
- ```
-
-If you are on macOS, add the following environment variables before the installing command.
-
-```bash
-CC=clang CXX=clang++ CFLAGS='-stdlib=libc++'
-```
-
-e.g.,
-
-```bash
-CC=clang CXX=clang++ CFLAGS='-stdlib=libc++' MMCV_WITH_OPS=1 pip install -e .
+```{note}
+- To compile ONNX Runtime custom operators, please refer to [How to build custom operators for ONNX Runtime](https://mmcv.readthedocs.io/en/latest/deployment/onnxruntime_op.html#how-to-build-custom-operators-for-onnx-runtime)
+- To compile TensorRT customization, please refer to [How to build TensorRT plugins in MMCV](https://mmcv.readthedocs.io/en/latest/deployment/tensorrt_plugin.html#how-to-build-tensorrt-plugins-in-mmcv)
```
```{note}
@@ -47,12 +21,104 @@ e.g., in a minimum container environment or servers without GUI,
you can first install it before installing MMCV to skip the installation of `opencv-python`.
```
-### Build on Windows
+#### Build on Linux
+
+1. Clone the repo
+
+ ```bash
+ git clone https://github.com/open-mmlab/mmcv.git
+ cd mmcv
+ ```
+
+2. Install `ninja` and `psutil` to speed up the compilation
+
+ ```bash
+ pip install -r requirements/optional.txt
+ ```
+
+3. Check the nvcc version (requires 9.2+. Skip if no GPU available.)
+
+ ```bash
+ nvcc --version
+ ```
+
+ If the above command outputs the following message, it means that the nvcc setting is OK, otherwise you need to set CUDA_HOME.
+
+ ```
+ nvcc: NVIDIA (R) Cuda compiler driver
+ Copyright (c) 2005-2020 NVIDIA Corporation
+ Built on Mon_Nov_30_19:08:53_PST_2020
+ Cuda compilation tools, release 11.2, V11.2.67
+ Build cuda_11.2.r11.2/compiler.29373293_0
+ ```
+
+ :::{note}
+ If you want to support ROCm, you can refer to [AMD ROCm](https://rocmdocs.amd.com/en/latest/Installation_Guide/Installation-Guide.html) to install ROCm.
+ :::
+
+4. Check the gcc version (requires 5.4+)
+
+ ```bash
+ gcc --version
+ ```
+
+5. Start building (takes 10+ min)
+
+ ```bash
+ MMCV_WITH_OPS=1 pip install -e . -v
+ ```
+
+6. Validate the installation
+
+ ```bash
+ python .dev_scripts/check_installation.py
+ ```
+
+ If no error is reported by the above command, the installation is successful. If there is an error reported, please check [Frequently Asked Questions](../faq.md) to see if there is already a solution.
+
+ If no solution is found, please feel free to open an [issue](https://github.com/open-mmlab/mmcv/issues).
+
+#### Build on macOS
+
+```{note}
+If you are using a mac with an M1 chip, install the nightly version of PyTorch, otherwise you will encounter the problem in [issues#2218](https://github.com/open-mmlab/mmcv/issues/2218).
+```
+
+1. Clone the repo
+
+ ```bash
+ git clone https://github.com/open-mmlab/mmcv.git
+ cd mmcv
+ ```
+
+2. Install `ninja` and `psutil` to speed up the compilation
+
+ ```bash
+ pip install -r requirements/optional.txt
+ ```
+
+3. Start building
+
+ ```bash
+ MMCV_WITH_OPS=1 pip install -e .
+ ```
+
+4. Validate the installation
+
+ ```bash
+ python .dev_scripts/check_installation.py
+ ```
+
+ If no error is reported by the above command, the installation is successful. If there is an error reported, please check [Frequently Asked Questions](../faq.md) to see if there is already a solution.
+
+ If no solution is found, please feel free to open an [issue](https://github.com/open-mmlab/mmcv/issues).
+
+#### Build on Windows
Building MMCV on Windows is a bit more complicated than that on Linux.
The following instructions show how to get this accomplished.
-#### Prerequisite
+##### Prerequisite
The following software is required for building MMCV on windows.
Install them first.
@@ -71,7 +137,7 @@ Install them first.
You should know how to set up environment variables, especially `Path`, on Windows. The following instruction relies heavily on this skill.
```
-#### Setup Python Environment
+##### Common steps
1. Launch Anaconda prompt from Windows Start menu
@@ -79,62 +145,45 @@ You should know how to set up environment variables, especially `Path`, on Windo
2. Create a new conda environment
- ```shell
- conda create --name mmcv python=3.7 # 3.6, 3.7, 3.8 should work too as tested
- conda activate mmcv # make sure to activate environment before any operation
+ ```powershell
+ (base) PS C:\Users\xxx> conda create --name mmcv python=3.7
+ (base) PS C:\Users\xxx> conda activate mmcv # make sure to activate environment before any operation
```
3. Install PyTorch. Choose a version based on your need.
- ```shell
- conda install pytorch torchvision cudatoolkit=10.2 -c pytorch
+ ```powershell
+ # CUDA version
+ (mmcv) PS C:\Users\xxx> conda install pytorch torchvision cudatoolkit=10.2 -c pytorch
+ # CPU version
+ (mmcv) PS C:\Users\xxx> conda install install pytorch torchvision cpuonly -c pytorch
```
- We only tested PyTorch version >= 1.6.0.
+4. Clone the repo
-4. Prepare MMCV source code
+ ```powershell
+ (mmcv) PS C:\Users\xxx> git clone https://github.com/open-mmlab/mmcv.git
+ (mmcv) PS C:\Users\xxx\mmcv> cd mmcv
+ ```
+
+5. Install `ninja` and `psutil` to speed up the compilation
+
+ ```powershell
+ (mmcv) PS C:\Users\xxx\mmcv> pip install -r requirements/optional.txt
+ ```
+
+6. Install required Python packages
```shell
- git clone https://github.com/open-mmlab/mmcv.git
- cd mmcv
+ (mmcv) PS C:\Users\xxx\mmcv> pip install -r requirements/runtime.txt
```
-5. Install required Python packages
-
- ```shell
- pip3 install -r requirements/runtime.txt
- ```
-
-6. It is recommended to install `ninja` to speed up the compilation
-
- ```bash
- pip install -r requirements/optional.txt
- ```
-
-#### Build and install MMCV
-
-MMCV can be built in three ways:
-
-1. Lite version (without ops)
-
- In this way, no custom ops are compiled and mmcv is a pure python package.
-
-2. Full version (CPU ops)
-
- Module `ops` will be compiled as a pytorch extension, but only x86 code will be compiled. The compiled ops can be executed on CPU only.
-
-3. Full version (CUDA ops)
-
- Both x86 and CUDA codes of `ops` module will be compiled. The compiled version can be run on both CPU and CUDA-enabled GPU (if implemented).
-
-##### Common steps
-
-1. Set up MSVC compiler
+7. Set up MSVC compiler
Set Environment variable, add `C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Tools\MSVC\14.27.29110\bin\Hostx86\x64` to `PATH`, so that `cl.exe` will be available in prompt, as shown below.
- ```none
- (base) PS C:\Users\xxx> cl
+ ```powershell
+ (mmcv) PS C:\Users\xxx\mmcv> cl
Microsoft (R) C/C++ Optimizing Compiler Version 19.27.29111 for x64
Copyright (C) Microsoft Corporation. All rights reserved.
@@ -145,124 +194,135 @@ MMCV can be built in three ways:
You may want to change the system language to English because pytorch will parse text output from `cl.exe` to check its version. However only utf-8 is recognized. Navigate to Control Panel -> Region -> Administrative -> Language for Non-Unicode programs and change it to English.
-##### Option 1: Build MMCV (lite version)
+##### Build and install MMCV
-After finishing above common steps, launch Anaconda shell from Start menu and issue the following commands:
+mmcv-full can be built in two ways:
-```shell
-# activate environment
-conda activate mmcv
-# change directory
-cd mmcv
-# install
-python setup.py develop
-# check
-pip list
-```
+1. Full version (CPU ops)
-##### Option 2: Build MMCV (full version with CPU)
+ Module `ops` will be compiled as a pytorch extension, but only x86 code will be compiled. The compiled ops can be executed on CPU only.
-1. Finish above common steps
+2. Full version (CUDA ops)
-2. Set up environment variables
+ Both x86 and CUDA codes of `ops` module will be compiled. The compiled version can be run on both CPU and CUDA-enabled GPU (if implemented).
- ```shell
- $env:MMCV_WITH_OPS = 1
- $env:MAX_JOBS = 8 # based on your available number of CPU cores and amount of memory
+###### CPU version
+
+1. Set up environment variables
+
+ ```powershell
+ (mmcv) PS C:\Users\xxx\mmcv> $env:MMCV_WITH_OPS = 1
```
-3. Following build steps of the lite version
+2. Build and install
- ```shell
- # activate environment
- conda activate mmcv
- # change directory
- cd mmcv
- # build
- python setup.py build_ext # if success, cl will be launched to compile ops
- # install
- python setup.py develop
- # check
- pip list
+ ```powershell
+ (mmcv) PS C:\Users\xxx\mmcv> python setup.py build_ext
+ (mmcv) PS C:\Users\xxx\mmcv> python setup.py develop
```
-##### Option 3: Build MMCV (full version with CUDA)
-
-1. Finish above common steps
+###### GPU version
2. Make sure `CUDA_PATH` or `CUDA_HOME` is already set in `envs` via `ls env:`, desired output is shown as below:
- ```none
- (base) PS C:\Users\WRH> ls env:
+ ```powershell
+ (mmcv) PS C:\Users\xxx\mmcv> ls env:
Name Value
---- -----
- <... omit some lines ...>
CUDA_PATH C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2
CUDA_PATH_V10_1 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1
CUDA_PATH_V10_2 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2
- <... omit some lines ...>
```
This should already be done by CUDA installer. If not, or you have multiple version of CUDA toolkit installed, set it with
- ```shell
- $env:CUDA_HOME = "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2"
+ ```powershell
+ (mmcv) PS C:\Users\xxx\mmcv> $env:CUDA_HOME = "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2"
# OR
- $env:CUDA_HOME = $env:CUDA_PATH_V10_2 # if CUDA_PATH_V10_2 is in envs:
+ (mmcv) PS C:\Users\xxx\mmcv> $env:CUDA_HOME = $env:CUDA_PATH_V10_2 # if CUDA_PATH_V10_2 is in envs:
```
3. Set CUDA target arch
```shell
- # Suppose you are using GTX 1080, which is of capability 6.1
- $env:TORCH_CUDA_ARCH_LIST="6.1"
- # OR build all supported arch, will be slow
- $env:TORCH_CUDA_ARCH_LIST="3.5 3.7 5.0 5.2 6.0 6.1 7.0 7.5"
+ # Here you need to change to the target architecture corresponding to your GPU
+ (mmcv) PS C:\Users\xxx\mmcv> $env:TORCH_CUDA_ARCH_LIST="7.5"
```
-```{note}
-Check your the compute capability of your GPU from [here](https://developer.nvidia.com/cuda-gpus).
-```
+ :::{note}
+ Check your the compute capability of your GPU from [here](https://developer.nvidia.com/cuda-gpus).
-4. Launch compiling the same way as CPU
+ ```powershell
+ (mmcv) PS C:\Users\xxx\mmcv> &"C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\extras\demo_suite\deviceQuery.exe"
+ Device 0: "NVIDIA GeForce GTX 1660 SUPER"
+ CUDA Driver Version / Runtime Version 11.7 / 11.1
+ CUDA Capability Major/Minor version number: 7.5
+ ```
- ```shell
- $env:MMCV_WITH_OPS = 1
- $env:MAX_JOBS = 8 # based on available number of CPU cores and amount of memory
- # activate environment
- conda activate mmcv
- # change directory
- cd mmcv
+ The 7.5 above indicates the target architecture. Note: You need to replace v10.2 with your CUDA version in the above command.
+ :::
+
+4. Build and install
+
+ ```powershell
# build
python setup.py build_ext # if success, cl will be launched to compile ops
# install
python setup.py develop
- # check
- pip list
```
-```{note}
-If you are compiling against PyTorch 1.6.0, you might meet some errors from PyTorch as described in [this issue](https://github.com/pytorch/pytorch/issues/42467). Follow [this pull request](https://github.com/pytorch/pytorch/pull/43380/files) to modify the source code in your local PyTorch installation.
+ ```{note}
+ If you are compiling against PyTorch 1.6.0, you might meet some errors from PyTorch as described in [this issue](https://github.com/pytorch/pytorch/issues/42467). Follow [this pull request](https://github.com/pytorch/pytorch/pull/43380/files) to modify the source code in your local PyTorch installation.
+ ```
+
+##### Validate installation
+
+```powershell
+(mmcv) PS C:\Users\xxx\mmcv> python .dev_scripts/check_installation.py
```
-If you meet issues when running or compiling mmcv, we list some common issues in [Frequently Asked Question](../faq.html).
+If no error is reported by the above command, the installation is successful. If there is an error reported, please check [Frequently Asked Questions](../faq.md) to see if there is already a solution.
+If no solution is found, please feel free to open an [issue](https://github.com/open-mmlab/mmcv/issues).
-## \[Optional\] Build MMCV on IPU machine
+### Build mmcv
+
+If you need to use PyTorch-related modules, make sure PyTorch has been successfully installed in your environment by referring to the [PyTorch official installation guide](https://github.com/pytorch/pytorch#installation).
+
+1. Clone the repo
+
+ ```bash
+ git clone https://github.com/open-mmlab/mmcv.git
+ cd mmcv
+ ```
+
+2. Start building
+
+ ```bash
+ pip install -e . -v
+ ```
+
+3. Validate installation
+
+ ```bash
+ python -c 'import mmcv;print(mmcv.__version__)'
+ ```
+
+### Build mmcv-full on IPU machine
Firstly, you need to apply for an IPU cloud machine, see [here](https://www.graphcore.ai/ipus-in-the-cloud).
-### Option 1: Docker
+#### Option 1: Docker
1. Pull docker
-```shell
- docker pull graphcore/pytorch
-```
+ ```bash
+ docker pull graphcore/pytorch
+ ```
2. Build MMCV under same python environment
-### Option 2: Install from SDK
+#### Option 2: Install from SDK
1. Build MMCV
diff --git a/docs/en/get_started/installation.md b/docs/en/get_started/installation.md
index d9fd1b336..ea1a095aa 100644
--- a/docs/en/get_started/installation.md
+++ b/docs/en/get_started/installation.md
@@ -2,183 +2,374 @@
There are two versions of MMCV:
-- **mmcv-full**: comprehensive, with full features and various CUDA ops out of box. It takes longer time to build.
-- **mmcv**: lite, without CUDA ops but all other features, similar to mmcv\<1.0.0. It is useful when you do not need those CUDA ops.
+- **mmcv-full**: comprehensive, with full features and various CPU and CUDA ops out of box. It takes longer time to build.
+- **mmcv**: lite, without CPU and CUDA ops but all other features, similar to mmcv\<1.0.0. It is useful when you do not need those CUDA ops.
```{warning}
Do not install both versions in the same environment, otherwise you may encounter errors like `ModuleNotFound`. You need to uninstall one before installing the other. `Installing the full version is highly recommended if CUDA is avaliable`.
```
-a. Install the full version.
-
-Before installing mmcv-full, make sure that PyTorch has been successfully installed following the [official guide](https://pytorch.org/).
-
-We provide pre-built mmcv packages (recommended) with different PyTorch and CUDA versions to simplify the building for **Linux and Windows systems**. In addition, you can run [check_installation.py](.dev_scripts/check_installation.py) to check the installation of mmcv-full after running the installation commands.
-
-i. Install the latest version.
-
-The rule for installing the latest `mmcv-full` is as follows:
-
-```shell
-pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/{cu_version}/{torch_version}/index.html
-```
-
-Please replace `{cu_version}` and `{torch_version}` in the url to your desired one. For example,
-to install the latest `mmcv-full` with `CUDA 11.1` and `PyTorch 1.9.0`, use the following command:
-
-```shell
-pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu111/torch1.9.0/index.html
-```
-
-For more details, please refer the the following tables and delete `=={mmcv_version}`.
-
-ii. Install a specified version.
-
-The rule for installing a specified `mmcv-full` is as follows:
-
-```shell
-pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/{cu_version}/{torch_version}/index.html
-```
-
-First of all, please refer to the Releases and replace `{mmcv_version}` a specified one. e.g. `1.3.9`.
-Then replace `{cu_version}` and `{torch_version}` in the url to your desired versions. For example,
-to install `mmcv-full==1.3.9` with `CUDA 11.1` and `PyTorch 1.9.0`, use the following command:
-
-```shell
-pip install mmcv-full==1.3.9 -f https://download.openmmlab.com/mmcv/dist/cu111/torch1.9.0/index.html
-```
+### Install mmcv-full
```{note}
+- The following installation steps are for Linux and Windows platforms only. To install mmcv-full on macOS platform, please refer to [build mmcv-full from source](https://mmcv.readthedocs.io/en/latest/get_started/build.html#macos-mmcv-full).
+- To compile ONNX Runtime custom operators, please refer to [How to build custom operators for ONNX Runtime](https://mmcv.readthedocs.io/en/latest/deployment/onnxruntime_op.html#how-to-build-custom-operators-for-onnx-runtime)
+- To compile TensorRT customization, please refer to [How to build TensorRT plugins in MMCV](https://mmcv.readthedocs.io/en/latest/deployment/tensorrt_plugin.html#how-to-build-tensorrt-plugins-in-mmcv)
+```
+
+Before installing mmcv-full, make sure that PyTorch has been successfully installed following the [PyTorch official installation guide](https://pytorch.org/get-started/locally/#start-locally). This can be verified using the following command
+
+```bash
+python -c 'import torch;print(torch.__version__)'
+```
+
+If version information is output, then PyTorch is installed.
+
+#### Install with mim (recommended)
+
+[mim](https://github.com/open-mmlab/mim) is the package management tool for the OpenMMLab projects, which makes it easy to install mmcv-full
+
+```bash
+pip install -U openmim
+mim install mmcv-full
+```
+
+If you find that the above installation command does not use a pre-built package ending with `.whl` but a source package ending with `.tar.gz`, you may not have a pre-build package corresponding to the PyTorch or CUDA or mmcv-full version, in which case you can [build mmcv-full from source](build.md).
+
+
+Installation log using pre-built packages
+
+Looking in links: https://download.openmmlab.com/mmcv/dist/cu102/torch1.8.0/index.html
+Collecting mmcv-full
+Downloading https://download.openmmlab.com/mmcv/dist/cu102/torch1.8.0/mmcv_full-1.6.1-cp38-cp38-manylinux1_x86_64.whl
+
+
+
+
+Installation log using source packages
+
+Looking in links: https://download.openmmlab.com/mmcv/dist/cu102/torch1.8.0/index.html
+Collecting mmcv-full==1.6.0
+Downloading mmcv-full-1.6.0.tar.gz
+
+
+
+To install a specific version of mmcv-full, for example, mmcv-full version 1.6.0, you can use the following command
+
+```bash
+mim install mmcv-full==1.6.0
+```
+
+:::{note}
+If you would like to use `opencv-python-headless` instead of `opencv-python`,
+e.g., in a minimum container environment or servers without GUI,
+you can first install it before installing MMCV to skip the installation of `opencv-python`.
+
+Alternatively, if it takes too long to install a dependency library, you can specify the pypi source
+
+```bash
+mim install mmcv-full -i https://pypi.tuna.tsinghua.edu.cn/simple
+```
+
+:::
+
+You can run [check_installation.py](https://github.com/open-mmlab/mmcv/.dev_scripts/check_installation.py) to check the installation of mmcv-full after running the installation commands.
+
+#### Install with pip
+
+Use the following command to check the version of CUDA and PyTorch
+
+```bash
+python -c 'import torch;print(torch.__version__);print(torch.version.cuda)'
+```
+
+Select the appropriate installation command depending on the type of system, CUDA version, PyTorch version, and MMCV version
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+If you do not find a corresponding version in the dropdown box above, you probably do not have a pre-built package corresponding to the PyTorch or CUDA or mmcv-full version, at which point you can [build mmcv-full from source](build.md).
+
+:::{note}
mmcv-full is only compiled on PyTorch 1.x.0 because the compatibility
usually holds between 1.x.0 and 1.x.1. If your PyTorch version is 1.x.1, you
can install mmcv-full compiled with PyTorch 1.x.0 and it usually works well.
-For example, if your PyTorch version is 1.8.1 and CUDA version is 11.1, you
-can use the following command to install mmcv-full.
+For example, if your PyTorch version is 1.8.1, you can feel free to choose 1.8.x.
+:::
-`pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu111/torch1.8.0/index.html`
+:::{note}
+If you would like to use `opencv-python-headless` instead of `opencv-python`,
+e.g., in a minimum container environment or servers without GUI,
+you can first install it before installing MMCV to skip the installation of `opencv-python`.
+
+Alternatively, if it takes too long to install a dependency library, you can specify the pypi source
+
+```bash
+mim install mmcv-full -i https://pypi.tuna.tsinghua.edu.cn/simple
```
-For more details, please refer the the following tables.
+:::
-