[Fix] Fix MLU code format (#2887)

pull/2873/merge
Chris Jiang 2023-08-07 15:21:22 +08:00 committed by GitHub
parent 9036241eac
commit c5233598a5
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
19 changed files with 178 additions and 159 deletions

View File

@ -34,9 +34,9 @@ void ball_query_forward_mlu(int b, int n, int m, float min_radius,
auto idx_ptr = idx_impl->cnnlMalloc();
auto handle = mluOpGetCurrentHandle();
TORCH_MLUOP_CHECK(mluOpBallQuery(handle, new_xyz_desc.desc(), new_xyz_ptr, xyz_desc.desc(),
xyz_ptr, min_radius, max_radius, nsample, idx_desc.desc(),
idx_ptr));
TORCH_MLUOP_CHECK(mluOpBallQuery(
handle, new_xyz_desc.desc(), new_xyz_ptr, xyz_desc.desc(), xyz_ptr,
min_radius, max_radius, nsample, idx_desc.desc(), idx_ptr));
}
void ball_query_forward_impl(int b, int n, int m, float min_radius,

View File

@ -38,9 +38,9 @@ void BoxIouRotatedMLUKernelLauncher(const Tensor boxes1, const Tensor boxes2,
auto ious_ptr = ious_impl->cnnlMalloc();
CNLOG(INFO) << "Call mluOpBoxIouRotated().";
TORCH_MLUOP_CHECK(mluOpBoxIouRotated(handle, mode_flag, aligned, boxes1_desc.desc(), boxes1_ptr,
boxes2_desc.desc(), boxes2_ptr, ious_desc.desc(),
ious_ptr));
TORCH_MLUOP_CHECK(mluOpBoxIouRotated(
handle, mode_flag, aligned, boxes1_desc.desc(), boxes1_ptr,
boxes2_desc.desc(), boxes2_ptr, ious_desc.desc(), ious_ptr));
}
void box_iou_rotated_mlu(const Tensor boxes1, const Tensor boxes2, Tensor ious,

View File

@ -72,12 +72,12 @@ void CARAFEForwardMLUKernelLauncher(const Tensor input, const Tensor mask,
auto handle = mluOpGetCurrentHandle();
mluOpCarafeDescriptor_t carafe_desc;
TORCH_MLUOP_CHECK(mluOpCreateCarafeDescriptor(&carafe_desc));
TORCH_MLUOP_CHECK(mluOpSetCarafeDescriptor(carafe_desc, input.dim(), kernel_size, group_size,
scale_factor));
TORCH_MLUOP_CHECK(mluOpSetCarafeDescriptor(
carafe_desc, input.dim(), kernel_size, group_size, scale_factor));
// launch kernel
TORCH_MLUOP_CHECK(mluOpCarafeForward(handle, carafe_desc, input_desc.desc(), input_ptr,
mask_desc.desc(), mask_ptr, output_desc.desc(),
output_ptr));
TORCH_MLUOP_CHECK(mluOpCarafeForward(handle, carafe_desc, input_desc.desc(),
input_ptr, mask_desc.desc(), mask_ptr,
output_desc.desc(), output_ptr));
// destroy op descriptor
TORCH_MLUOP_CHECK(mluOpDestroyCarafeDescriptor(carafe_desc));
@ -160,13 +160,14 @@ void CARAFEBackwardMLUKernelLauncher(
auto handle = mluOpGetCurrentHandle();
mluOpCarafeDescriptor_t carafe_desc;
TORCH_MLUOP_CHECK(mluOpCreateCarafeDescriptor(&carafe_desc));
TORCH_MLUOP_CHECK(mluOpSetCarafeDescriptor(carafe_desc, grad_output.dim(), kernel_size,
group_size, scale_factor));
TORCH_MLUOP_CHECK(mluOpSetCarafeDescriptor(
carafe_desc, grad_output.dim(), kernel_size, group_size, scale_factor));
// launch kernel
TORCH_MLUOP_CHECK(mluOpCarafeBackward(handle, carafe_desc, input_desc.desc(), input_ptr,
mask_desc.desc(), mask_ptr, grad_output_desc.desc(),
grad_output_ptr, grad_input_desc.desc(), grad_input_ptr,
grad_mask_desc.desc(), grad_mask_ptr));
TORCH_MLUOP_CHECK(mluOpCarafeBackward(
handle, carafe_desc, input_desc.desc(), input_ptr, mask_desc.desc(),
mask_ptr, grad_output_desc.desc(), grad_output_ptr,
grad_input_desc.desc(), grad_input_ptr, grad_mask_desc.desc(),
grad_mask_ptr));
// destroy op descriptor
TORCH_MLUOP_CHECK(mluOpDestroyCarafeDescriptor(carafe_desc));

View File

@ -51,9 +51,9 @@ void DeformRoIPoolForwardMLUKernelLauncher(Tensor input, Tensor rois,
// get compute handle
auto handle = mluOpGetCurrentHandle();
TORCH_MLUOP_CHECK(mluOpDeformRoiPoolForward(
handle, input_desc.desc(), input_ptr, rois_desc.desc(), rois_ptr,
offset_real_desc, offset_ptr, pooled_height, pooled_width, spatial_scale,
sampling_ratio, gamma, output_desc.desc(), output_ptr));
handle, input_desc.desc(), input_ptr, rois_desc.desc(), rois_ptr,
offset_real_desc, offset_ptr, pooled_height, pooled_width, spatial_scale,
sampling_ratio, gamma, output_desc.desc(), output_ptr));
output.copy_(output_contiguous);
}
@ -114,11 +114,11 @@ void DeformRoIPoolBackwardMLUKernelLauncher(
// get compute handle
auto handle = mluOpGetCurrentHandle();
TORCH_MLUOP_CHECK(mluOpDeformRoiPoolBackward(
handle, grad_output_desc.desc(), grad_output_ptr, input_desc.desc(),
input_ptr, rois_desc.desc(), rois_ptr, offset_real_desc, offset_ptr,
pooled_height, pooled_width, spatial_scale, sampling_ratio, gamma,
grad_input_desc.desc(), grad_input_ptr, grad_offset_real_desc,
grad_offset_ptr));
handle, grad_output_desc.desc(), grad_output_ptr, input_desc.desc(),
input_ptr, rois_desc.desc(), rois_ptr, offset_real_desc, offset_ptr,
pooled_height, pooled_width, spatial_scale, sampling_ratio, gamma,
grad_input_desc.desc(), grad_input_ptr, grad_offset_real_desc,
grad_offset_ptr));
grad_input.copy_(grad_input_);
}

View File

@ -43,8 +43,8 @@ Tensor diff_iou_rotated_sort_vertices_forward_mlu(Tensor vertices, Tensor mask,
// launch kernel
TORCH_MLUOP_CHECK(mluOpDiffIouRotatedSortVerticesForward(
handle, vertices_desc.desc(), vertices_ptr, mask_desc.desc(), mask_ptr,
num_valid_desc.desc(), num_valid_ptr, idx_desc.desc(), idx_ptr));
handle, vertices_desc.desc(), vertices_ptr, mask_desc.desc(), mask_ptr,
num_valid_desc.desc(), num_valid_ptr, idx_desc.desc(), idx_ptr));
return idx;
}

View File

@ -30,7 +30,8 @@ void IoU3DNMS3DMLUKernelLauncher(Tensor boxes, Tensor &keep, Tensor &keep_num,
// workspace
size_t workspace_size = 0;
auto handle = mluOpGetCurrentHandle();
TORCH_MLUOP_CHECK(mluOpGetNmsWorkspaceSize(handle, boxes_desc.desc(), NULL, &workspace_size));
TORCH_MLUOP_CHECK(mluOpGetNmsWorkspaceSize(handle, boxes_desc.desc(), NULL,
&workspace_size));
auto workspace = at::empty(workspace_size, boxes.options().dtype(at::kByte));
// get compute queue
@ -57,14 +58,14 @@ void IoU3DNMS3DMLUKernelLauncher(Tensor boxes, Tensor &keep, Tensor &keep_num,
const float offset = 0.0;
TORCH_MLUOP_CHECK(mluOpCreateNmsDescriptor(&nms_desc));
TORCH_MLUOP_CHECK(mluOpSetNmsDescriptor(nms_desc, box_mode, output_mode, algo, method_mode,
iou_threshold, soft_nms_sigma, max_output_size,
confidence_threshold, offset, input_layout,
pad_to_max_output_size));
TORCH_MLUOP_CHECK(mluOpSetNmsDescriptor(
nms_desc, box_mode, output_mode, algo, method_mode, iou_threshold,
soft_nms_sigma, max_output_size, confidence_threshold, offset,
input_layout, pad_to_max_output_size));
TORCH_MLUOP_CHECK(mluOpNms(handle, nms_desc, boxes_desc.desc(), boxes_ptr, NULL, NULL,
workspace_ptr, workspace_size, output_desc.desc(), output_ptr,
output_size_ptr));
TORCH_MLUOP_CHECK(mluOpNms(handle, nms_desc, boxes_desc.desc(), boxes_ptr,
NULL, NULL, workspace_ptr, workspace_size,
output_desc.desc(), output_ptr, output_size_ptr));
TORCH_MLUOP_CHECK(mluOpDestroyNmsDescriptor(nms_desc));
}

View File

@ -123,7 +123,8 @@ void MluOpTensorDescriptor::set_desc(const at::Tensor& t,
mluOpDataType_t dtype,
std::vector<int>& dims) {
int dimNb = dims.size();
TORCH_MLUOP_CHECK(mluOpSetTensorDescriptor(desc_, layout, dtype, dimNb, dims.data()));
TORCH_MLUOP_CHECK(
mluOpSetTensorDescriptor(desc_, layout, dtype, dimNb, dims.data()));
}
// Handles

View File

@ -35,13 +35,13 @@
auto NAME##_ptr = NAME##_impl->cnnlMalloc();
#ifndef TORCH_MLUOP_CHECK
#define TORCH_MLUOP_CHECK(EXPR) \
do { \
mluOpStatus_t status = EXPR; \
if (status != MLUOP_STATUS_SUCCESS) { \
CNLOG(ERROR) << ""; \
TORCH_CHECK(false, "MLUOPS error: ", mluOpGetErrorString(status)); \
} \
#define TORCH_MLUOP_CHECK(EXPR) \
do { \
mluOpStatus_t status = EXPR; \
if (status != MLUOP_STATUS_SUCCESS) { \
CNLOG(ERROR) << ""; \
TORCH_CHECK(false, "MLUOPS error: ", mluOpGetErrorString(status)); \
} \
} while (0);
#endif
@ -65,8 +65,12 @@ mluOpReduceMode_t getMluOpReduceMode(const reduce_t reduce_type);
class MluOpTensorDescriptor {
public:
MluOpTensorDescriptor() { TORCH_MLUOP_CHECK(mluOpCreateTensorDescriptor(&desc_)); };
~MluOpTensorDescriptor() { TORCH_MLUOP_CHECK(mluOpDestroyTensorDescriptor(desc_)); }
MluOpTensorDescriptor() {
TORCH_MLUOP_CHECK(mluOpCreateTensorDescriptor(&desc_));
};
~MluOpTensorDescriptor() {
TORCH_MLUOP_CHECK(mluOpDestroyTensorDescriptor(desc_));
}
void set(at::Tensor);
void set_with_layout(at::Tensor, mluOpTensorLayout_t layout);
@ -89,7 +93,9 @@ class MluOpHandle {
handle = nullptr;
}
}
void setQueue(cnrtQueue_t queue) { TORCH_MLUOP_CHECK(mluOpSetQueue(handle, queue)); }
void setQueue(cnrtQueue_t queue) {
TORCH_MLUOP_CHECK(mluOpSetQueue(handle, queue));
}
mluOpHandle_t handle;
};

View File

@ -36,11 +36,11 @@ Tensor MsDeformAttnForwardLauncher(const Tensor& value,
INITIAL_MLU_PARAM_WITH_TENSOR(attn_weight);
TORCH_MLUOP_CHECK(mluOpMsDeformAttnForward(
handle, value_desc.desc(), value_ptr, spatial_shapes_int_desc.desc(),
spatial_shapes_int_ptr, level_start_index_int_desc.desc(),
level_start_index_int_ptr, sampling_loc_desc.desc(), sampling_loc_ptr,
attn_weight_desc.desc(), attn_weight_ptr, im2col_step, output_desc.desc(),
output_ptr));
handle, value_desc.desc(), value_ptr, spatial_shapes_int_desc.desc(),
spatial_shapes_int_ptr, level_start_index_int_desc.desc(),
level_start_index_int_ptr, sampling_loc_desc.desc(), sampling_loc_ptr,
attn_weight_desc.desc(), attn_weight_ptr, im2col_step, output_desc.desc(),
output_ptr));
output = output.view({batch_size, num_queries, num_heads * channels});
return output;

View File

@ -34,8 +34,8 @@ Tensor NMSMLUKernelLauncher(Tensor boxes, Tensor scores, float iou_threshold,
// workspace
size_t workspace_size = 0;
auto handle = mluOpGetCurrentHandle();
TORCH_MLUOP_CHECK(mluOpGetNmsWorkspaceSize(handle, boxes_desc.desc(), scores_desc.desc(),
&workspace_size));
TORCH_MLUOP_CHECK(mluOpGetNmsWorkspaceSize(
handle, boxes_desc.desc(), scores_desc.desc(), &workspace_size));
auto workspace = at::empty(workspace_size, boxes.options().dtype(at::kByte));
// get compute queue
@ -63,14 +63,15 @@ Tensor NMSMLUKernelLauncher(Tensor boxes, Tensor scores, float iou_threshold,
const int max_output_size = max_output_boxes;
TORCH_MLUOP_CHECK(mluOpCreateNmsDescriptor(&nms_desc));
TORCH_MLUOP_CHECK(mluOpSetNmsDescriptor(nms_desc, box_mode, output_mode, algo, method_mode,
iou_threshold, soft_nms_sigma, max_output_size,
confidence_threshold, (float)offset, input_layout,
pad_to_max_output_size));
TORCH_MLUOP_CHECK(mluOpSetNmsDescriptor(
nms_desc, box_mode, output_mode, algo, method_mode, iou_threshold,
soft_nms_sigma, max_output_size, confidence_threshold, (float)offset,
input_layout, pad_to_max_output_size));
TORCH_MLUOP_CHECK(mluOpNms(handle, nms_desc, boxes_desc.desc(), boxes_ptr, scores_desc.desc(),
scores_ptr, workspace_ptr, workspace_size, output_desc.desc(),
output_ptr, output_size_ptr));
TORCH_MLUOP_CHECK(mluOpNms(handle, nms_desc, boxes_desc.desc(), boxes_ptr,
scores_desc.desc(), scores_ptr, workspace_ptr,
workspace_size, output_desc.desc(), output_ptr,
output_size_ptr));
TORCH_MLUOP_CHECK(mluOpDestroyNmsDescriptor(nms_desc));
int output_num = *static_cast<int *>(output_size.cpu().data_ptr());
auto ret = output.to(boxes.options().dtype(at::kLong));

View File

@ -30,7 +30,8 @@ Tensor nms_rotated_mlu(Tensor boxes, Tensor scores, float iou_threshold) {
// workspace
size_t workspace_size = 0;
auto handle = mluOpGetCurrentHandle();
TORCH_MLUOP_CHECK(mluOpGetNmsRotatedWorkspaceSize(handle, boxes_desc.desc(), &workspace_size));
TORCH_MLUOP_CHECK(mluOpGetNmsRotatedWorkspaceSize(handle, boxes_desc.desc(),
&workspace_size));
auto workspace = at::empty(workspace_size, boxes.options().dtype(at::kByte));
auto boxes_impl = torch_mlu::getMluTensorImpl(boxes_);
@ -44,9 +45,10 @@ Tensor nms_rotated_mlu(Tensor boxes, Tensor scores, float iou_threshold) {
auto output_size_impl = torch_mlu::getMluTensorImpl(output_size);
auto output_size_ptr = output_size_impl->cnnlMalloc();
TORCH_MLUOP_CHECK(mluOpNmsRotated(handle, iou_threshold, boxes_desc.desc(), boxes_ptr,
scores_desc.desc(), scores_ptr, workspace_ptr, workspace_size,
output_desc.desc(), output_ptr, (int *)output_size_ptr));
TORCH_MLUOP_CHECK(mluOpNmsRotated(
handle, iou_threshold, boxes_desc.desc(), boxes_ptr, scores_desc.desc(),
scores_ptr, workspace_ptr, workspace_size, output_desc.desc(), output_ptr,
(int *)output_size_ptr));
int output_num = *static_cast<int *>(output_size.cpu().data_ptr());
auto ret = output.to(boxes.options().dtype(at::kLong));
return ret.slice(0, 0, output_num);

View File

@ -35,8 +35,8 @@ void PSAMaskForwardMLUKernelLauncher(const int psa_type, const Tensor x,
auto y_impl = torch_mlu::getMluTensorImpl(y_tmp);
auto y_ptr = y_impl->cnnlMalloc();
TORCH_MLUOP_CHECK(mluOpPsamaskForward(handle, psa_type, x_desc.desc(), x_ptr, h_mask, w_mask,
y_desc.desc(), y_ptr));
TORCH_MLUOP_CHECK(mluOpPsamaskForward(handle, psa_type, x_desc.desc(), x_ptr,
h_mask, w_mask, y_desc.desc(), y_ptr));
y.copy_(y_tmp);
}
@ -67,7 +67,8 @@ void PSAMaskBackwardMLUKernelLauncher(const int psa_type, const Tensor dy,
auto dy_impl = torch_mlu::getMluTensorImpl(dy_tensor);
auto dy_ptr = dy_impl->cnnlMalloc();
TORCH_MLUOP_CHECK(mluOpPsamaskBackward(handle, psa_type, dy_desc.desc(), dy_ptr, h_mask, w_mask,
TORCH_MLUOP_CHECK(mluOpPsamaskBackward(handle, psa_type, dy_desc.desc(),
dy_ptr, h_mask, w_mask,
dx_tmp_desc.desc(), dx_ptr));
dx.copy_(dx_tmp);

View File

@ -49,9 +49,9 @@ void ROIAlignForwardMLUKernelLauncher(Tensor input, Tensor rois, Tensor output,
mluOpRoiAlignForwardDescriptor_t roialign_desc;
TORCH_MLUOP_CHECK(mluOpCreateRoiAlignForwardDescriptor(&roialign_desc));
TORCH_MLUOP_CHECK(mluOpSetRoiAlignForwardDescriptor_v2(roialign_desc, aligned_height,
aligned_width, sampling_ratio,
spatial_scale, pool_mode, aligned));
TORCH_MLUOP_CHECK(mluOpSetRoiAlignForwardDescriptor_v2(
roialign_desc, aligned_height, aligned_width, sampling_ratio,
spatial_scale, pool_mode, aligned));
auto handle = mluOpGetCurrentHandle();
if (pool_mode == 0) {
@ -65,16 +65,16 @@ void ROIAlignForwardMLUKernelLauncher(Tensor input, Tensor rois, Tensor output,
auto argmax_y_ptr = argmax_y_impl->cnnlMalloc();
argmax_y_desc.set_with_layout(argmax_x_contiguous, MLUOP_LAYOUT_NHWC);
argmax_x_desc.set_with_layout(argmax_x_contiguous, MLUOP_LAYOUT_NHWC);
TORCH_MLUOP_CHECK(mluOpRoiAlignForward_v2(handle, roialign_desc, input_desc.desc(), self_ptr,
rois_desc.desc(), rois_ptr, output_desc.desc(),
output_ptr, argmax_x_desc.desc(), argmax_x_ptr,
argmax_y_desc.desc(), argmax_y_ptr);
TORCH_MLUOP_CHECK(mluOpRoiAlignForward_v2(
handle, roialign_desc, input_desc.desc(), self_ptr, rois_desc.desc(),
rois_ptr, output_desc.desc(), output_ptr, argmax_x_desc.desc(),
argmax_x_ptr, argmax_y_desc.desc(), argmax_y_ptr));
argmax_x.copy_(argmax_x_contiguous);
argmax_y.copy_(argmax_y_contiguous);
} else {
TORCH_MLUOP_CHECK(mluOpRoiAlignForward_v2(handle, roialign_desc, input_desc.desc(), self_ptr,
rois_desc.desc(), rois_ptr, output_desc.desc(),
output_ptr, NULL, NULL, NULL, NULL);
TORCH_MLUOP_CHECK(mluOpRoiAlignForward_v2(
handle, roialign_desc, input_desc.desc(), self_ptr, rois_desc.desc(),
rois_ptr, output_desc.desc(), output_ptr, NULL, NULL, NULL, NULL));
}
TORCH_MLUOP_CHECK(mluOpDestroyRoiAlignForwardDescriptor(roialign_desc));
output.copy_(output_contiguous);
@ -136,16 +136,16 @@ void ROIAlignBackwardMLUKernelLauncher(Tensor grad, Tensor rois,
auto argmax_y_ptr = argmax_y_impl->cnnlMalloc();
argmax_y_desc.set_with_layout(argmax_x_contiguous, MLUOP_LAYOUT_NHWC);
argmax_x_desc.set_with_layout(argmax_x_contiguous, MLUOP_LAYOUT_NHWC);
TORCH_MLUOP_CHECK(mluOpRoiAlignBackward_v2(handle, grads_desc.desc(), grad_ptr,
rois_desc.desc(), rois_ptr, argmax_y_desc.desc(),
argmax_x_ptr, argmax_y_desc.desc(), argmax_y_ptr,
spatial_scale, sampling_ratio, aligned, pool_mode,
grad_input_desc.desc(), grad_input_ptr));
TORCH_MLUOP_CHECK(mluOpRoiAlignBackward_v2(
handle, grads_desc.desc(), grad_ptr, rois_desc.desc(), rois_ptr,
argmax_y_desc.desc(), argmax_x_ptr, argmax_y_desc.desc(), argmax_y_ptr,
spatial_scale, sampling_ratio, aligned, pool_mode,
grad_input_desc.desc(), grad_input_ptr));
} else {
TORCH_MLUOP_CHECK(mluOpRoiAlignBackward_v2(handle, grads_desc.desc(), grad_ptr,
rois_desc.desc(), rois_ptr, NULL, NULL, NULL, NULL,
spatial_scale, sampling_ratio, aligned, pool_mode,
grad_input_desc.desc(), grad_input_ptr));
TORCH_MLUOP_CHECK(mluOpRoiAlignBackward_v2(
handle, grads_desc.desc(), grad_ptr, rois_desc.desc(), rois_ptr, NULL,
NULL, NULL, NULL, spatial_scale, sampling_ratio, aligned, pool_mode,
grad_input_desc.desc(), grad_input_ptr));
}
grad_input.copy_(grad_input_);
}

View File

@ -41,9 +41,9 @@ void ROIAlignRotatedForwardMLUKernelLauncher(Tensor input, Tensor rois,
// get compute handle
auto handle = mluOpGetCurrentHandle();
TORCH_MLUOP_CHECK(mluOpRoiAlignRotatedForward(
handle, input_desc.desc(), input_ptr, rois_desc.desc(), rois_ptr,
pooled_height, pooled_width, sampling_ratio, spatial_scale, aligned,
clockwise, output_desc.desc(), output_ptr);
handle, input_desc.desc(), input_ptr, rois_desc.desc(), rois_ptr,
pooled_height, pooled_width, sampling_ratio, spatial_scale, aligned,
clockwise, output_desc.desc(), output_ptr));
output.copy_(output_contiguous);
}
@ -77,9 +77,9 @@ void ROIAlignRotatedBackwardMLUKernelLauncher(
// get compute handle
auto handle = mluOpGetCurrentHandle();
TORCH_MLUOP_CHECK(mluOpRoiAlignRotatedBackward(
handle, top_grad_desc.desc(), top_grad_ptr, rois_desc.desc(), rois_ptr,
pooled_height, pooled_width, sampling_ratio, spatial_scale, aligned,
clockwise, bottom_grad_desc.desc(), bottom_grad_ptr);
handle, top_grad_desc.desc(), top_grad_ptr, rois_desc.desc(), rois_ptr,
pooled_height, pooled_width, sampling_ratio, spatial_scale, aligned,
clockwise, bottom_grad_desc.desc(), bottom_grad_ptr));
bottom_grad.copy_(bottom_grad_);
}

View File

@ -45,8 +45,8 @@ void RoiawarePool3dForwardMLUKernelLauncher(
// allocate extra space for workspace
size_t workspace_size = 0;
TORCH_MLUOP_CHECK(mluOpGetRoiawarePool3dForwardWorkspaceSize(
handle, rois_desc.desc(), pts_desc.desc(), pts_feature_desc.desc(),
&workspace_size));
handle, rois_desc.desc(), pts_desc.desc(), pts_feature_desc.desc(),
&workspace_size));
auto workspace = at::empty(workspace_size, rois.options().dtype(at::kByte));
auto workspace_impl = torch_mlu::getMluTensorImpl(workspace);

View File

@ -76,10 +76,10 @@ void RotatedFeatureAlignBackwardMLUKernelLauncher(const Tensor top_grad,
// get compute handle
auto handle = mluOpGetCurrentHandle();
TORCH_MLUOP_CHECK(mluOpRotatedFeatureAlignBackward(handle, top_grad_desc.desc(), top_grad_ptr,
best_bboxes_desc.desc(), best_bboxes_ptr,
spatial_scale, points,
bottom_grad_desc.desc(), bottom_grad_ptr));
TORCH_MLUOP_CHECK(mluOpRotatedFeatureAlignBackward(
handle, top_grad_desc.desc(), top_grad_ptr, best_bboxes_desc.desc(),
best_bboxes_ptr, spatial_scale, points, bottom_grad_desc.desc(),
bottom_grad_ptr));
bottom_grad.copy_(bottom_grad_);
}

View File

@ -86,17 +86,17 @@ std::vector<torch::Tensor> GetIndicePairsForwardMLUKernelLauncher(
mluOpDataType_t dtype = MLUOP_DTYPE_INT32;
std::vector<int> dims;
dims = {numAct, coorDim + 1};
TORCH_MLUOP_CHECK(mluOpSetTensorDescriptor(indices_desc.desc(), layout, dtype, dims.size(),
dims.data()));
TORCH_MLUOP_CHECK(mluOpSetTensorDescriptor(
indices_desc.desc(), layout, dtype, dims.size(), dims.data()));
dims = {kernelVolume, 2, numAct};
TORCH_MLUOP_CHECK(mluOpSetTensorDescriptor(indicePairs_desc.desc(), layout, dtype,
dims.size(), dims.data()));
TORCH_MLUOP_CHECK(mluOpSetTensorDescriptor(
indicePairs_desc.desc(), layout, dtype, dims.size(), dims.data()));
dims = {kernelVolume};
TORCH_MLUOP_CHECK(mluOpSetTensorDescriptor(indiceNum_desc.desc(), layout, dtype, dims.size(),
dims.data()));
TORCH_MLUOP_CHECK(mluOpSetTensorDescriptor(
indiceNum_desc.desc(), layout, dtype, dims.size(), dims.data()));
dims = {out_size, coorDim + 1};
TORCH_MLUOP_CHECK(mluOpSetTensorDescriptor(out_indices_desc.desc(), layout, dtype,
dims.size(), dims.data()));
TORCH_MLUOP_CHECK(mluOpSetTensorDescriptor(
out_indices_desc.desc(), layout, dtype, dims.size(), dims.data()));
}
mluOpSparseConvolutionDescriptor_t sparse_conv_desc;
@ -127,13 +127,14 @@ std::vector<torch::Tensor> GetIndicePairsForwardMLUKernelLauncher(
auto indiceNum_ptr = indiceNum_impl->cnnlMalloc();
auto indice_workspace_ptr = indice_workspace_impl->cnnlMalloc();
TORCH_MLUOP_CHECK(mluOpGetIndicePairs(handle, sparse_conv_desc, indices_desc.desc(),
indices_ptr, indice_workspace_ptr, workspace_size,
indicePairs_desc.desc(), indicePairs_ptr,
out_indices_desc.desc(), out_indices_ptr,
indiceNum_desc.desc(), indiceNum_ptr));
TORCH_MLUOP_CHECK(mluOpGetIndicePairs(
handle, sparse_conv_desc, indices_desc.desc(), indices_ptr,
indice_workspace_ptr, workspace_size, indicePairs_desc.desc(),
indicePairs_ptr, out_indices_desc.desc(), out_indices_ptr,
indiceNum_desc.desc(), indiceNum_ptr));
int num_act_out = 0;
TORCH_MLUOP_CHECK(mluOpGetSparseConvolutionNumActOut(sparse_conv_desc, &num_act_out));
TORCH_MLUOP_CHECK(
mluOpGetSparseConvolutionNumActOut(sparse_conv_desc, &num_act_out));
TORCH_MLUOP_CHECK(mluOpDestroySparseConvolutionDescriptor(sparse_conv_desc));
if (!sub_m) {
return {out_indices.slice(0, 0, num_act_out), indicePairs, indiceNum};
@ -179,25 +180,28 @@ torch::Tensor IndiceConvForwardMLUKernelLauncher(
int dims[8];
// features_desc
TORCH_MLUOP_CHECK(mluOpGetTensorDescriptor(features_desc.desc(), &layout, &dtype, &dim, dims));
TORCH_MLUOP_CHECK(mluOpSetTensorDescriptor(features_desc.desc(), MLUOP_LAYOUT_ARRAY, dtype,
dim, dims));
TORCH_MLUOP_CHECK(mluOpGetTensorDescriptor(features_desc.desc(), &layout,
&dtype, &dim, dims));
TORCH_MLUOP_CHECK(mluOpSetTensorDescriptor(
features_desc.desc(), MLUOP_LAYOUT_ARRAY, dtype, dim, dims));
// filters_desc
TORCH_MLUOP_CHECK(mluOpGetTensorDescriptor(filters_desc.desc(), &layout, &dtype, &dim, dims));
TORCH_MLUOP_CHECK(mluOpSetTensorDescriptor(filters_desc.desc(), MLUOP_LAYOUT_ARRAY, dtype,
dim, dims));
TORCH_MLUOP_CHECK(mluOpGetTensorDescriptor(filters_desc.desc(), &layout,
&dtype, &dim, dims));
TORCH_MLUOP_CHECK(mluOpSetTensorDescriptor(
filters_desc.desc(), MLUOP_LAYOUT_ARRAY, dtype, dim, dims));
// indice_pairs_desc
TORCH_MLUOP_CHECK(mluOpGetTensorDescriptor(indice_pairs_desc.desc(), &layout, &dtype, &dim,
dims));
TORCH_MLUOP_CHECK(mluOpSetTensorDescriptor(indice_pairs_desc.desc(), MLUOP_LAYOUT_ARRAY,
dtype, dim, dims));
TORCH_MLUOP_CHECK(mluOpGetTensorDescriptor(indice_pairs_desc.desc(),
&layout, &dtype, &dim, dims));
TORCH_MLUOP_CHECK(mluOpSetTensorDescriptor(
indice_pairs_desc.desc(), MLUOP_LAYOUT_ARRAY, dtype, dim, dims));
// output_desc
TORCH_MLUOP_CHECK(mluOpGetTensorDescriptor(output_desc.desc(), &layout, &dtype, &dim, dims));
TORCH_MLUOP_CHECK(mluOpSetTensorDescriptor(output_desc.desc(), MLUOP_LAYOUT_ARRAY, dtype, dim,
dims));
TORCH_MLUOP_CHECK(mluOpGetTensorDescriptor(output_desc.desc(), &layout,
&dtype, &dim, dims));
TORCH_MLUOP_CHECK(mluOpSetTensorDescriptor(
output_desc.desc(), MLUOP_LAYOUT_ARRAY, dtype, dim, dims));
}
auto handle = mluOpGetCurrentHandle();
@ -290,37 +294,39 @@ std::vector<torch::Tensor> IndiceConvBackwardMLUKernelLauncher(
int dims[8];
// features_desc
TORCH_MLUOP_CHECK(mluOpGetTensorDescriptor(features_desc.desc(), &layout, &dtype, &dim, dims));
TORCH_MLUOP_CHECK(mluOpSetTensorDescriptor(features_desc.desc(), MLUOP_LAYOUT_ARRAY, dtype,
dim, dims));
TORCH_MLUOP_CHECK(mluOpGetTensorDescriptor(features_desc.desc(), &layout,
&dtype, &dim, dims));
TORCH_MLUOP_CHECK(mluOpSetTensorDescriptor(
features_desc.desc(), MLUOP_LAYOUT_ARRAY, dtype, dim, dims));
// filters_desc
TORCH_MLUOP_CHECK(mluOpGetTensorDescriptor(filters_desc.desc(), &layout, &dtype, &dim, dims));
TORCH_MLUOP_CHECK(mluOpGetTensorDescriptor(filters_desc.desc(), &layout,
&dtype, &dim, dims));
if (dim == 4) {
TORCH_MLUOP_CHECK(mluOpSetTensorDescriptor(filters_desc.desc(), MLUOP_LAYOUT_HWCN, dtype,
dim, dims));
TORCH_MLUOP_CHECK(mluOpSetTensorDescriptor(
filters_desc.desc(), MLUOP_LAYOUT_HWCN, dtype, dim, dims));
} else {
TORCH_MLUOP_CHECK(mluOpSetTensorDescriptor(filters_desc.desc(), MLUOP_LAYOUT_ARRAY, dtype,
dim, dims));
TORCH_MLUOP_CHECK(mluOpSetTensorDescriptor(
filters_desc.desc(), MLUOP_LAYOUT_ARRAY, dtype, dim, dims));
}
// output_grad_desc
TORCH_MLUOP_CHECK(mluOpGetTensorDescriptor(output_grad_desc.desc(), &layout, &dtype, &dim,
dims));
TORCH_MLUOP_CHECK(mluOpSetTensorDescriptor(output_grad_desc.desc(), MLUOP_LAYOUT_ARRAY, dtype,
dim, dims));
TORCH_MLUOP_CHECK(mluOpGetTensorDescriptor(output_grad_desc.desc(), &layout,
&dtype, &dim, dims));
TORCH_MLUOP_CHECK(mluOpSetTensorDescriptor(
output_grad_desc.desc(), MLUOP_LAYOUT_ARRAY, dtype, dim, dims));
// indice_pairs_desc
TORCH_MLUOP_CHECK(mluOpGetTensorDescriptor(indice_pairs_desc.desc(), &layout, &dtype, &dim,
dims));
TORCH_MLUOP_CHECK(mluOpSetTensorDescriptor(indice_pairs_desc.desc(), MLUOP_LAYOUT_ARRAY,
dtype, dim, dims));
TORCH_MLUOP_CHECK(mluOpGetTensorDescriptor(indice_pairs_desc.desc(),
&layout, &dtype, &dim, dims));
TORCH_MLUOP_CHECK(mluOpSetTensorDescriptor(
indice_pairs_desc.desc(), MLUOP_LAYOUT_ARRAY, dtype, dim, dims));
// input_grad_desc
TORCH_MLUOP_CHECK(mluOpGetTensorDescriptor(input_grad_desc.desc(), &layout, &dtype, &dim,
dims));
TORCH_MLUOP_CHECK(mluOpSetTensorDescriptor(input_grad_desc.desc(), MLUOP_LAYOUT_ARRAY, dtype,
dim, dims));
TORCH_MLUOP_CHECK(mluOpGetTensorDescriptor(input_grad_desc.desc(), &layout,
&dtype, &dim, dims));
TORCH_MLUOP_CHECK(mluOpSetTensorDescriptor(
input_grad_desc.desc(), MLUOP_LAYOUT_ARRAY, dtype, dim, dims));
}
auto handle = mluOpGetCurrentHandle();

View File

@ -30,8 +30,8 @@ void ThreeNNMLUKernelLauncher(int b, int n, int m, const Tensor unknown,
auto handle = mluOpGetCurrentHandle();
size_t workspace_size = 0;
TORCH_MLUOP_CHECK(mluOpGetThreeNNForwardWorkspaceSize(handle, known_desc.desc(),
&workspace_size));
TORCH_MLUOP_CHECK(mluOpGetThreeNNForwardWorkspaceSize(
handle, known_desc.desc(), &workspace_size));
auto known_workspace =
at::empty(workspace_size, known.options().dtype(at::kByte));
@ -46,10 +46,10 @@ void ThreeNNMLUKernelLauncher(int b, int n, int m, const Tensor unknown,
auto idx_ptr = idx_impl->cnnlMalloc();
auto workspace_ptr = workspace_impl->cnnlMalloc();
TORCH_MLUOP_CHECK(mluOpThreeNNForward(handle, unknown_desc.desc(), unknown_ptr,
known_desc.desc(), known_ptr, workspace_ptr,
workspace_size, dist2_desc.desc(), dist2_ptr,
idx_desc.desc(), idx_ptr));
TORCH_MLUOP_CHECK(mluOpThreeNNForward(
handle, unknown_desc.desc(), unknown_ptr, known_desc.desc(), known_ptr,
workspace_ptr, workspace_size, dist2_desc.desc(), dist2_ptr,
idx_desc.desc(), idx_ptr));
}
void three_nn_forward_mlu(int b, int n, int m, const Tensor unknown,

View File

@ -62,14 +62,14 @@ int HardVoxelizeForwardMLUKernelLauncher(
at::empty(workspace_size, points.options().dtype(at::kByte));
INITIAL_MLU_PARAM_WITH_TENSOR(workspace_tensor);
TORCH_MLUOP_CHECK(mluOpVoxelization(handle, points_desc.desc(), points_ptr,
voxel_size_tensor_desc.desc(), voxel_size_tensor_ptr,
coors_range_tensor_desc.desc(), coors_range_tensor_ptr,
max_points, max_voxels, NDim, true, workspace_tensor_ptr,
workspace_size, voxels_desc.desc(), voxels_ptr,
coors_desc.desc(), coors_ptr,
num_points_per_voxel_desc.desc(), num_points_per_voxel_ptr,
voxel_num_tensor_desc.desc(), voxel_num_tensor_ptr));
TORCH_MLUOP_CHECK(mluOpVoxelization(
handle, points_desc.desc(), points_ptr, voxel_size_tensor_desc.desc(),
voxel_size_tensor_ptr, coors_range_tensor_desc.desc(),
coors_range_tensor_ptr, max_points, max_voxels, NDim, true,
workspace_tensor_ptr, workspace_size, voxels_desc.desc(), voxels_ptr,
coors_desc.desc(), coors_ptr, num_points_per_voxel_desc.desc(),
num_points_per_voxel_ptr, voxel_num_tensor_desc.desc(),
voxel_num_tensor_ptr));
auto voxel_num_cpu = voxel_num_tensor.to(at::kCPU);
int voxel_num_int = voxel_num_cpu.data_ptr<int>()[0];
return voxel_num_int;