[Docs] Refactor the structure of documentation (#1580)
* [Docs] Refactor the structure of documentation * [Docs] Refactor the structure of documentation * fix symlink * fix link * fix typo * polish docstring * fix docstringpull/1588/head^2
|
@ -6,7 +6,6 @@ on:
|
|||
- 'README.md'
|
||||
- 'README_zh-CN.md'
|
||||
- 'docs/**'
|
||||
- 'docs_zh_CN/**'
|
||||
- 'examples/**'
|
||||
- '.dev_scripts/**'
|
||||
|
||||
|
@ -15,7 +14,6 @@ on:
|
|||
- 'README.md'
|
||||
- 'README_zh-CN.md'
|
||||
- 'docs/**'
|
||||
- 'docs_zh_CN/**'
|
||||
- 'examples/**'
|
||||
- '.dev_scripts/**'
|
||||
|
||||
|
|
|
@ -67,8 +67,8 @@ instance/
|
|||
.scrapy
|
||||
|
||||
# Sphinx documentation
|
||||
docs/_build/
|
||||
docs_zh_CN/_build/
|
||||
docs/en/_build/
|
||||
docs/zh_cn/_build/
|
||||
|
||||
# PyBuilder
|
||||
target/
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
<div align="center">
|
||||
<img src="https://raw.githubusercontent.com/open-mmlab/mmcv/master/docs/mmcv-logo.png" width="300"/>
|
||||
<img src="https://raw.githubusercontent.com/open-mmlab/mmcv/master/docs/en/mmcv-logo.png" width="300"/>
|
||||
</div>
|
||||
|
||||
[](https://pypi.org/project/mmcv/) [](https://pypi.org/project/mmcv) [](https://github.com/open-mmlab/mmcv/actions) [](https://codecov.io/gh/open-mmlab/mmcv) [](https://github.com/open-mmlab/mmcv/blob/master/LICENSE)
|
||||
|
@ -173,7 +173,7 @@ For more details, please refer the the following tables.
|
|||
</tbody>
|
||||
</table>
|
||||
|
||||
**Note**: The pre-built packages provided above do not include all versions of mmcv-full, you can click on the corresponding links to see the supported versions. For example, you can click [cu102-torch1.8.0](https://download.openmmlab.com/mmcv/dist/cu102/torch1.8.0/index.html) and you can see that `cu102-torch1.8.0` only provides 1.3.0 and above versions of mmcv-full. In addition, We no longer provide `mmcv-full` pre-built packages compiled with `PyTorch 1.3 & 1.4` since v1.3.17. You can find previous versions that compiled with PyTorch 1.3 & 1.4 [here](./docs/get_started/previous_versions.md). The compatibility is still ensured in our CI, but we will discard the support of PyTorch 1.3 & 1.4 next year.
|
||||
**Note**: The pre-built packages provided above do not include all versions of mmcv-full, you can click on the corresponding links to see the supported versions. For example, you can click [cu102-torch1.8.0](https://download.openmmlab.com/mmcv/dist/cu102/torch1.8.0/index.html) and you can see that `cu102-torch1.8.0` only provides 1.3.0 and above versions of mmcv-full. In addition, We no longer provide `mmcv-full` pre-built packages compiled with `PyTorch 1.3 & 1.4` since v1.3.17. You can find previous versions that compiled with PyTorch 1.3 & 1.4 [here](./docs/en/get_started/previous_versions.md). The compatibility is still ensured in our CI, but we will discard the support of PyTorch 1.3 & 1.4 next year.
|
||||
|
||||
Another way is to compile locally by running
|
||||
|
||||
|
@ -191,7 +191,7 @@ pip install mmcv
|
|||
|
||||
c. Install full version with custom operators for onnxruntime
|
||||
|
||||
- Check [here](docs/deployment/onnxruntime_op.md) for detailed instruction.
|
||||
- Check [here](docs/en/deployment/onnxruntime_op.md) for detailed instruction.
|
||||
|
||||
If you would like to build MMCV from source, please refer to the [guide](https://mmcv.readthedocs.io/en/latest/get_started/build.html).
|
||||
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
<div align="center">
|
||||
<img src="https://raw.githubusercontent.com/open-mmlab/mmcv/master/docs/mmcv-logo.png" width="300"/>
|
||||
<img src="https://raw.githubusercontent.com/open-mmlab/mmcv/master/docs/en/mmcv-logo.png" width="300"/>
|
||||
</div>
|
||||
|
||||
[](https://pypi.org/project/mmcv/) [](https://pypi.org/project/mmcv) [](https://github.com/open-mmlab/mmcv/actions) [](https://codecov.io/gh/open-mmlab/mmcv) [](https://github.com/open-mmlab/mmcv/blob/master/LICENSE)
|
||||
|
@ -35,7 +35,7 @@ MMCV 提供了如下众多功能:
|
|||
- 多种 CNN 网络结构
|
||||
- 高质量实现的常见 CUDA 算子
|
||||
|
||||
如想了解更多特性和使用,请参考[文档](http://mmcv.readthedocs.io/en/latest)。
|
||||
如想了解更多特性和使用,请参考[文档](http://mmcv.readthedocs.io/zh_CN/latest)。
|
||||
|
||||
提示: MMCV 需要 Python 3.6 以上版本。
|
||||
|
||||
|
@ -50,7 +50,7 @@ MMCV 有两个版本:
|
|||
|
||||
a. 安装完整版
|
||||
|
||||
在安装 mmcv-full 之前,请确保 PyTorch 已经成功安装在环境中,可以参考 PyTorch 官方[文档](https://pytorch.org/)。
|
||||
在安装 mmcv-full 之前,请确保 PyTorch 已经成功安装在环境中,可以参考 PyTorch [官方文档](https://pytorch.org/)。
|
||||
|
||||
我们提供了不同 PyTorch 和 CUDA 版本的 mmcv-full 预编译包,可以大大简化用户安装编译过程。强烈推荐通过预编译包来安装。另外,安装完成后可以运行 [check_installation.py](.dev_scripts/check_installation.py) 脚本检查 mmcv-full 是否安装成功。
|
||||
|
||||
|
@ -170,7 +170,7 @@ pip install mmcv-full==1.3.9 -f https://download.openmmlab.com/mmcv/dist/cu111/t
|
|||
</tbody>
|
||||
</table>
|
||||
|
||||
**注意**:以上提供的预编译包并不囊括所有的 mmcv-full 版本,你可以点击对应链接查看支持的版本。例如,点击 [cu102-torch1.8.0](https://download.openmmlab.com/mmcv/dist/cu102/torch1.8.0/index.html),可以看到 `cu102-torch1.8.0` 只提供了 1.3.0 及以上的 mmcv-full 版本。另外,从 `mmcv v1.3.17` 开始,我们不再提供`PyTorch 1.3 & 1.4` 对应的 mmcv-full 预编译包。你可以在 [这](./docs_zh_CN/get_started/previous_versions.md) 找到 `PyTorch 1.3 & 1.4` 对应的预编包。虽然我们不再提供 `PyTorch 1.3 & 1.4` 对应的预编译包,但是我们依然在 CI 中保证对它们的兼容持续到下一年。
|
||||
**注意**:以上提供的预编译包并不囊括所有的 mmcv-full 版本,你可以点击对应链接查看支持的版本。例如,点击 [cu102-torch1.8.0](https://download.openmmlab.com/mmcv/dist/cu102/torch1.8.0/index.html),可以看到 `cu102-torch1.8.0` 只提供了 1.3.0 及以上的 mmcv-full 版本。另外,从 `mmcv v1.3.17` 开始,我们不再提供`PyTorch 1.3 & 1.4` 对应的 mmcv-full 预编译包。你可以在 [这](./docs/zh_cn/get_started/previous_versions.md) 找到 `PyTorch 1.3 & 1.4` 对应的预编包。虽然我们不再提供 `PyTorch 1.3 & 1.4` 对应的预编译包,但是我们依然在 CI 中保证对它们的兼容持续到下一年。
|
||||
|
||||
除了使用预编译包之外,另一种方式是在本地进行编译,直接运行下述命令
|
||||
|
||||
|
@ -188,13 +188,13 @@ pip install mmcv
|
|||
|
||||
c. 安装完整版并且编译 onnxruntime 的自定义算子
|
||||
|
||||
- 详细的指南请查看 [这里](docs/deployment/onnxruntime_op.md)。
|
||||
- 详细的指南请查看[这里](docs/zh_cn/deployment/onnxruntime_op.md)。
|
||||
|
||||
如果想从源码编译 MMCV,请参考[该文档](https://mmcv.readthedocs.io/en/latest/get_started/build.html)。
|
||||
如果想从源码编译 MMCV,请参考[该文档](https://mmcv.readthedocs.io/zh_CN/latest/get_started/build.html)。
|
||||
|
||||
## FAQ
|
||||
|
||||
如果你遇到了安装问题,CUDA 相关的问题或者 RuntimeErrors,可以首先参考[问题解决页面](https://mmcv.readthedocs.io/en/latest/faq.html) 看是否已经有解决方案。
|
||||
如果你遇到了安装问题,CUDA 相关的问题或者 RuntimeErrors,可以首先参考[问题解决页面](https://mmcv.readthedocs.io/zh_CN/latest/faq.html) 看是否已经有解决方案。
|
||||
|
||||
## 贡献指南
|
||||
|
||||
|
@ -208,7 +208,7 @@ c. 安装完整版并且编译 onnxruntime 的自定义算子
|
|||
扫描下方的二维码可关注 OpenMMLab 团队的 [知乎官方账号](https://www.zhihu.com/people/openmmlab),加入 OpenMMLab 团队的 [官方交流 QQ 群](https://jq.qq.com/?_wv=1027&k=GJP18SjI)
|
||||
|
||||
<div align="center">
|
||||
<img src="docs/_static/zhihu_qrcode.jpg" height="400" /> <img src="docs/_static/qq_group_qrcode.jpg" height="400" />
|
||||
<img src="docs/en/_static/zhihu_qrcode.jpg" height="400" /> <img src="docs/en/_static/qq_group_qrcode.jpg" height="400" />
|
||||
</div>
|
||||
|
||||
我们会在 OpenMMLab 社区为大家
|
||||
|
|
|
@ -1 +0,0 @@
|
|||
../../CONTRIBUTING.md
|
Before Width: | Height: | Size: 82 KiB After Width: | Height: | Size: 82 KiB |
Before Width: | Height: | Size: 65 KiB After Width: | Height: | Size: 65 KiB |
Before Width: | Height: | Size: 179 KiB After Width: | Height: | Size: 179 KiB |
Before Width: | Height: | Size: 92 KiB After Width: | Height: | Size: 92 KiB |
Before Width: | Height: | Size: 1.4 MiB After Width: | Height: | Size: 1.4 MiB |
Before Width: | Height: | Size: 23 KiB After Width: | Height: | Size: 23 KiB |
Before Width: | Height: | Size: 742 KiB After Width: | Height: | Size: 742 KiB |
Before Width: | Height: | Size: 1.3 MiB After Width: | Height: | Size: 1.3 MiB |
Before Width: | Height: | Size: 26 KiB After Width: | Height: | Size: 26 KiB |
Before Width: | Height: | Size: 27 KiB After Width: | Height: | Size: 27 KiB |
Before Width: | Height: | Size: 9.5 KiB After Width: | Height: | Size: 9.5 KiB |
Before Width: | Height: | Size: 98 KiB After Width: | Height: | Size: 98 KiB |
Before Width: | Height: | Size: 20 KiB After Width: | Height: | Size: 20 KiB |
Before Width: | Height: | Size: 70 KiB After Width: | Height: | Size: 70 KiB |
Before Width: | Height: | Size: 388 KiB After Width: | Height: | Size: 388 KiB |
|
@ -38,6 +38,11 @@ runner
|
|||
.. automodule:: mmcv.runner
|
||||
:members:
|
||||
|
||||
engine
|
||||
------
|
||||
.. automodule:: mmcv.engine
|
||||
:members:
|
||||
|
||||
ops
|
||||
------
|
||||
.. automodule:: mmcv.ops
|
|
@ -0,0 +1 @@
|
|||
../../../CONTRIBUTING.md
|
|
@ -17,9 +17,9 @@ import sys
|
|||
import pytorch_sphinx_theme
|
||||
from sphinx.builders.html import StandaloneHTMLBuilder
|
||||
|
||||
sys.path.insert(0, os.path.abspath('..'))
|
||||
sys.path.insert(0, os.path.abspath('../..'))
|
||||
|
||||
version_file = '../mmcv/version.py'
|
||||
version_file = '../../mmcv/version.py'
|
||||
with open(version_file, 'r') as f:
|
||||
exec(compile(f.read(), version_file, 'exec'))
|
||||
__version__ = locals()['__version__']
|
|
@ -138,7 +138,7 @@ For more details, please refer the the following tables.
|
|||
</table>
|
||||
|
||||
```{note}
|
||||
The pre-built packages provided above do not include all versions of mmcv-full, you can click on the corresponding links to see the supported versions. For example, if you click [cu102-torch1.8.0](https://download.openmmlab.com/mmcv/dist/cu102/torch1.8.0/index.html), you can see that `cu102-torch1.8.0` only provides 1.3.0 and above versions of mmcv-full. In addition, We no longer provide `mmcv-full` pre-built packages compiled with `PyTorch 1.3 & 1.4` since v1.3.17. You can find previous versions that compiled with PyTorch 1.3 & 1.4 [here](./docs/get_started/previous_versions.md). The compatibility is still ensured in our CI, but we will discard the support of PyTorch 1.3 & 1.4 next year.
|
||||
The pre-built packages provided above do not include all versions of mmcv-full, you can click on the corresponding links to see the supported versions. For example, if you click [cu102-torch1.8.0](https://download.openmmlab.com/mmcv/dist/cu102/torch1.8.0/index.html), you can see that `cu102-torch1.8.0` only provides 1.3.0 and above versions of mmcv-full. In addition, We no longer provide `mmcv-full` pre-built packages compiled with `PyTorch 1.3 & 1.4` since v1.3.17. You can find previous versions that compiled with PyTorch 1.3 & 1.4 [here](./previous_versions.md). The compatibility is still ensured in our CI, but we will discard the support of PyTorch 1.3 & 1.4 next year.
|
||||
```
|
||||
|
||||
Another way is to compile locally by running
|
Before Width: | Height: | Size: 26 KiB After Width: | Height: | Size: 26 KiB |
Before Width: | Height: | Size: 26 KiB After Width: | Height: | Size: 26 KiB |
|
@ -38,6 +38,11 @@ runner
|
|||
.. automodule:: mmcv.runner
|
||||
:members:
|
||||
|
||||
engine
|
||||
------
|
||||
.. automodule:: mmcv.engine
|
||||
:members:
|
||||
|
||||
ops
|
||||
------
|
||||
.. automodule:: mmcv.ops
|
|
@ -24,7 +24,7 @@
|
|||
+ 当你第一次提 PR 时
|
||||
|
||||
复刻 OpenMMLab 原代码库,点击 GitHub 页面右上角的 **Fork** 按钮即可
|
||||

|
||||

|
||||
|
||||
克隆复刻的代码库到本地
|
||||
|
||||
|
@ -73,14 +73,14 @@ git commit -m 'messages'
|
|||
```
|
||||
|
||||
+ 创建一个`拉取请求`
|
||||

|
||||

|
||||
|
||||
+ 修改`拉取请求`信息模板,描述修改原因和修改内容。还可以在 PR 描述中,手动关联到相关的`议题` (issue),(更多细节,请参考[官方文档](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue))。
|
||||
|
||||
#### 5. 讨论并评审你的代码
|
||||
|
||||
+ 创建`拉取请求`时,可以关联给相关人员进行评审
|
||||

|
||||

|
||||
|
||||
+ 根据评审人员的意见修改代码,并推送修改
|
||||
|
|
@ -17,9 +17,9 @@ import sys
|
|||
import pytorch_sphinx_theme
|
||||
from sphinx.builders.html import StandaloneHTMLBuilder
|
||||
|
||||
sys.path.insert(0, os.path.abspath('..'))
|
||||
sys.path.insert(0, os.path.abspath('../..'))
|
||||
|
||||
version_file = '../mmcv/version.py'
|
||||
version_file = '../../mmcv/version.py'
|
||||
with open(version_file, 'r') as f:
|
||||
exec(compile(f.read(), version_file, 'exec'))
|
||||
__version__ = locals()['__version__']
|
|
@ -134,7 +134,7 @@ pip install mmcv-full==1.3.9 -f https://download.openmmlab.com/mmcv/dist/cu111/t
|
|||
</table>
|
||||
|
||||
```{note}
|
||||
以上提供的预编译包并不囊括所有的 mmcv-full 版本,我们可以点击对应链接查看支持的版本。例如,点击 [cu102-torch1.8.0](https://download.openmmlab.com/mmcv/dist/cu102/torch1.8.0/index.html),可以看到 `cu102-torch1.8.0` 只提供了 1.3.0 及以上的 mmcv-full 版本。另外,从 `mmcv v1.3.17` 开始,我们不再提供`PyTorch 1.3 & 1.4` 对应的 mmcv-full 预编译包。你可以在 [这](./docs_zh_CN/get_started/previous_versions.md) 找到 `PyTorch 1.3 & 1.4` 对应的预编包。虽然我们不再提供 `PyTorch 1.3 & 1.4` 对应的预编译包,但是我们依然在 CI 中保证对它们的兼容持续到下一年。
|
||||
以上提供的预编译包并不囊括所有的 mmcv-full 版本,我们可以点击对应链接查看支持的版本。例如,点击 [cu102-torch1.8.0](https://download.openmmlab.com/mmcv/dist/cu102/torch1.8.0/index.html),可以看到 `cu102-torch1.8.0` 只提供了 1.3.0 及以上的 mmcv-full 版本。另外,从 `mmcv v1.3.17` 开始,我们不再提供`PyTorch 1.3 & 1.4` 对应的 mmcv-full 预编译包。你可以在 [这](./previous_versions.md) 找到 `PyTorch 1.3 & 1.4` 对应的预编包。虽然我们不再提供 `PyTorch 1.3 & 1.4` 对应的预编译包,但是我们依然在 CI 中保证对它们的兼容持续到下一年。
|
||||
```
|
||||
|
||||
除了使用预编译包之外,另一种方式是在本地进行编译,直接运行下述命令
|
|
@ -252,9 +252,9 @@ flow = mmcv.flowread('compressed.jpg', quantize=True, concat_axis=1)
|
|||
mmcv.flowshow(flow)
|
||||
```
|
||||
|
||||

|
||||

|
||||
|
||||
3. 流变换
|
||||
1. 流变换
|
||||
|
||||
```python
|
||||
img1 = mmcv.imread('img1.jpg')
|
||||
|
@ -264,12 +264,12 @@ warpped_img2 = mmcv.flow_warp(img1, flow)
|
|||
|
||||
img1 (左) and img2 (右)
|
||||
|
||||

|
||||

|
||||
|
||||
光流 (img2 -> img1)
|
||||
|
||||

|
||||

|
||||
|
||||
变换后的图像和真实图像的差异
|
||||
|
||||

|
||||

|
|
@ -17,7 +17,7 @@ mmcv.track_progress(func, tasks)
|
|||
```
|
||||
|
||||
效果如下
|
||||

|
||||

|
||||
|
||||
如果你想可视化多进程任务的进度,你可以使用 `track_parallel_progress` 。
|
||||
|
||||
|
@ -25,7 +25,7 @@ mmcv.track_progress(func, tasks)
|
|||
mmcv.track_parallel_progress(func, tasks, 8) # 8 workers
|
||||
```
|
||||
|
||||

|
||||

|
||||
|
||||
如果你想要迭代或枚举数据列表并可视化进度,你可以使用 `track_iter_progress` 。
|
||||
|
|
@ -548,7 +548,7 @@ def _initialize_override(module, override, cfg):
|
|||
|
||||
|
||||
def initialize(module, init_cfg):
|
||||
"""Initialize a module.
|
||||
r"""Initialize a module.
|
||||
|
||||
Args:
|
||||
module (``torch.nn.Module``): the module will be initialized.
|
||||
|
@ -556,6 +556,7 @@ def initialize(module, init_cfg):
|
|||
define initializer. OpenMMLab has implemented 6 initializers
|
||||
including ``Constant``, ``Xavier``, ``Normal``, ``Uniform``,
|
||||
``Kaiming``, and ``Pretrained``.
|
||||
|
||||
Example:
|
||||
>>> module = nn.Linear(2, 3, bias=True)
|
||||
>>> init_cfg = dict(type='Constant', layer='Linear', val =1 , bias =2)
|
||||
|
|
|
@ -260,8 +260,9 @@ def soft_nms(boxes,
|
|||
def batched_nms(boxes, scores, idxs, nms_cfg, class_agnostic=False):
|
||||
r"""Performs non-maximum suppression in a batched fashion.
|
||||
|
||||
Modified from
|
||||
https://github.com/pytorch/vision/blob/505cd6957711af790211896d32b40291bea1bc21/torchvision/ops/boxes.py#L39.
|
||||
Modified from `torchvision/ops/boxes.py#L39
|
||||
<https://github.com/pytorch/vision/blob/
|
||||
505cd6957711af790211896d32b40291bea1bc21/torchvision/ops/boxes.py#L39>`_.
|
||||
In order to perform NMS independently per class, we add an offset to all
|
||||
the boxes. The offset is dependent only on the class idx, and is large
|
||||
enough so that boxes from different classes do not overlap.
|
||||
|
|
|
@ -14,10 +14,21 @@ from .hooks import (HOOKS, CheckpointHook, ClosureHook, DistEvalHook,
|
|||
DistSamplerSeedHook, DvcliveLoggerHook, EMAHook, EvalHook,
|
||||
Fp16OptimizerHook, GradientCumulativeFp16OptimizerHook,
|
||||
GradientCumulativeOptimizerHook, Hook, IterTimerHook,
|
||||
LoggerHook, LrUpdaterHook, MlflowLoggerHook,
|
||||
NeptuneLoggerHook, OptimizerHook, PaviLoggerHook,
|
||||
SyncBuffersHook, TensorboardLoggerHook, TextLoggerHook,
|
||||
WandbLoggerHook)
|
||||
LoggerHook, MlflowLoggerHook, NeptuneLoggerHook,
|
||||
OptimizerHook, PaviLoggerHook, SyncBuffersHook,
|
||||
TensorboardLoggerHook, TextLoggerHook, WandbLoggerHook)
|
||||
from .hooks.lr_updater import StepLrUpdaterHook # noqa
|
||||
from .hooks.lr_updater import (CosineAnnealingLrUpdaterHook,
|
||||
CosineRestartLrUpdaterHook, CyclicLrUpdaterHook,
|
||||
ExpLrUpdaterHook, FixedLrUpdaterHook,
|
||||
FlatCosineAnnealingLrUpdaterHook,
|
||||
InvLrUpdaterHook, LrUpdaterHook,
|
||||
OneCycleLrUpdaterHook, PolyLrUpdaterHook)
|
||||
from .hooks.momentum_updater import (CosineAnnealingMomentumUpdaterHook,
|
||||
CyclicMomentumUpdaterHook,
|
||||
MomentumUpdaterHook,
|
||||
OneCycleMomentumUpdaterHook,
|
||||
StepMomentumUpdaterHook)
|
||||
from .iter_based_runner import IterBasedRunner, IterLoader
|
||||
from .log_buffer import LogBuffer
|
||||
from .optimizer import (OPTIMIZER_BUILDERS, OPTIMIZERS,
|
||||
|
@ -29,6 +40,12 @@ from .utils import get_host_info, get_time_str, obj_from_dict, set_random_seed
|
|||
__all__ = [
|
||||
'BaseRunner', 'Runner', 'EpochBasedRunner', 'IterBasedRunner', 'LogBuffer',
|
||||
'HOOKS', 'Hook', 'CheckpointHook', 'ClosureHook', 'LrUpdaterHook',
|
||||
'FixedLrUpdaterHook', 'StepLrUpdaterHook', 'ExpLrUpdaterHook',
|
||||
'PolyLrUpdaterHook', 'InvLrUpdaterHook', 'CosineAnnealingLrUpdaterHook',
|
||||
'FlatCosineAnnealingLrUpdaterHook', 'CosineRestartLrUpdaterHook',
|
||||
'CyclicLrUpdaterHook', 'OneCycleLrUpdaterHook', 'MomentumUpdaterHook',
|
||||
'StepMomentumUpdaterHook', 'CosineAnnealingMomentumUpdaterHook',
|
||||
'CyclicMomentumUpdaterHook', 'OneCycleMomentumUpdaterHook',
|
||||
'OptimizerHook', 'IterTimerHook', 'DistSamplerSeedHook', 'LoggerHook',
|
||||
'PaviLoggerHook', 'TextLoggerHook', 'TensorboardLoggerHook',
|
||||
'NeptuneLoggerHook', 'WandbLoggerHook', 'MlflowLoggerHook',
|
||||
|
|
|
@ -8,9 +8,17 @@ from .iter_timer import IterTimerHook
|
|||
from .logger import (DvcliveLoggerHook, LoggerHook, MlflowLoggerHook,
|
||||
NeptuneLoggerHook, PaviLoggerHook, TensorboardLoggerHook,
|
||||
TextLoggerHook, WandbLoggerHook)
|
||||
from .lr_updater import LrUpdaterHook
|
||||
from .lr_updater import (CosineAnnealingLrUpdaterHook,
|
||||
CosineRestartLrUpdaterHook, CyclicLrUpdaterHook,
|
||||
ExpLrUpdaterHook, FixedLrUpdaterHook,
|
||||
FlatCosineAnnealingLrUpdaterHook, InvLrUpdaterHook,
|
||||
LrUpdaterHook, OneCycleLrUpdaterHook,
|
||||
PolyLrUpdaterHook, StepLrUpdaterHook)
|
||||
from .memory import EmptyCacheHook
|
||||
from .momentum_updater import MomentumUpdaterHook
|
||||
from .momentum_updater import (CosineAnnealingMomentumUpdaterHook,
|
||||
CyclicMomentumUpdaterHook, MomentumUpdaterHook,
|
||||
OneCycleMomentumUpdaterHook,
|
||||
StepMomentumUpdaterHook)
|
||||
from .optimizer import (Fp16OptimizerHook, GradientCumulativeFp16OptimizerHook,
|
||||
GradientCumulativeOptimizerHook, OptimizerHook)
|
||||
from .profiler import ProfilerHook
|
||||
|
@ -19,11 +27,16 @@ from .sync_buffer import SyncBuffersHook
|
|||
|
||||
__all__ = [
|
||||
'HOOKS', 'Hook', 'CheckpointHook', 'ClosureHook', 'LrUpdaterHook',
|
||||
'OptimizerHook', 'Fp16OptimizerHook', 'IterTimerHook',
|
||||
'DistSamplerSeedHook', 'EmptyCacheHook', 'LoggerHook', 'MlflowLoggerHook',
|
||||
'PaviLoggerHook', 'TextLoggerHook', 'TensorboardLoggerHook',
|
||||
'NeptuneLoggerHook', 'WandbLoggerHook', 'DvcliveLoggerHook',
|
||||
'MomentumUpdaterHook', 'SyncBuffersHook', 'EMAHook', 'EvalHook',
|
||||
'DistEvalHook', 'ProfilerHook', 'GradientCumulativeOptimizerHook',
|
||||
'GradientCumulativeFp16OptimizerHook'
|
||||
'FixedLrUpdaterHook', 'StepLrUpdaterHook', 'ExpLrUpdaterHook',
|
||||
'PolyLrUpdaterHook', 'InvLrUpdaterHook', 'CosineAnnealingLrUpdaterHook',
|
||||
'FlatCosineAnnealingLrUpdaterHook', 'CosineRestartLrUpdaterHook',
|
||||
'CyclicLrUpdaterHook', 'OneCycleLrUpdaterHook', 'OptimizerHook',
|
||||
'Fp16OptimizerHook', 'IterTimerHook', 'DistSamplerSeedHook',
|
||||
'EmptyCacheHook', 'LoggerHook', 'MlflowLoggerHook', 'PaviLoggerHook',
|
||||
'TextLoggerHook', 'TensorboardLoggerHook', 'NeptuneLoggerHook',
|
||||
'WandbLoggerHook', 'DvcliveLoggerHook', 'MomentumUpdaterHook',
|
||||
'StepMomentumUpdaterHook', 'CosineAnnealingMomentumUpdaterHook',
|
||||
'CyclicMomentumUpdaterHook', 'OneCycleMomentumUpdaterHook',
|
||||
'SyncBuffersHook', 'EMAHook', 'EvalHook', 'DistEvalHook', 'ProfilerHook',
|
||||
'GradientCumulativeOptimizerHook', 'GradientCumulativeFp16OptimizerHook'
|
||||
]
|
||||
|
|
|
@ -65,7 +65,7 @@ class EvalHook(Hook):
|
|||
**eval_kwargs: Evaluation arguments fed into the evaluate function of
|
||||
the dataset.
|
||||
|
||||
Notes:
|
||||
Note:
|
||||
If new arguments are added for EvalHook, tools/test.py,
|
||||
tools/eval_metric.py may be affected.
|
||||
"""
|
||||
|
|
|
@ -232,7 +232,7 @@ class CyclicMomentumUpdaterHook(MomentumUpdaterHook):
|
|||
This momentum scheduler usually used together with the CyclicLRUpdater
|
||||
to improve the performance in the 3D detection area.
|
||||
|
||||
Attributes:
|
||||
Args:
|
||||
target_ratio (tuple[float]): Relative ratio of the lowest momentum and
|
||||
the highest momentum to the initial momentum.
|
||||
cyclic_times (int): Number of cycles during training
|
||||
|
|