mirror of
https://github.com/open-mmlab/mmcv.git
synced 2025-06-03 21:54:52 +08:00
parent
1290bdd181
commit
ec43b671ab
@ -6,16 +6,28 @@ from .registry import ACTIVATION_LAYERS
|
||||
@ACTIVATION_LAYERS.register_module()
|
||||
class HSigmoid(nn.Module):
|
||||
"""Hard Sigmoid Module. Apply the hard sigmoid function:
|
||||
Hsigmoid(x) = min(max((x + 1) / 2, 0), 1)
|
||||
Hsigmoid(x) = min(max((x + bias) / divisor, min_value), max_value)
|
||||
Default: Hsigmoid(x) = min(max((x + 1) / 2, 0), 1)
|
||||
|
||||
Args:
|
||||
bias (float): Bias of the input feature map. Default: 1.0.
|
||||
divisor (float): Divisor of the input feature map. Default: 2.0.
|
||||
min_value (float): Lower bound value. Default: 0.0.
|
||||
max_value (float): Upper bound value. Default: 1.0.
|
||||
|
||||
Returns:
|
||||
Tensor: The output tensor.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
def __init__(self, bias=1.0, divisor=2.0, min_value=0.0, max_value=1.0):
|
||||
super(HSigmoid, self).__init__()
|
||||
self.bias = bias
|
||||
self.divisor = divisor
|
||||
assert self.divisor != 0
|
||||
self.min_value = min_value
|
||||
self.max_value = max_value
|
||||
|
||||
def forward(self, x):
|
||||
x = (x + 1) / 2
|
||||
x = (x + self.bias) / self.divisor
|
||||
|
||||
return x.clamp_(0, 1)
|
||||
return x.clamp_(self.min_value, self.max_value)
|
||||
|
@ -1,9 +1,15 @@
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from mmcv.cnn.bricks import HSigmoid
|
||||
|
||||
|
||||
def test_hsigmoid():
|
||||
# test assertion divisor can not be zero
|
||||
with pytest.raises(AssertionError):
|
||||
HSigmoid(divisor=0)
|
||||
|
||||
# test with default parameters
|
||||
act = HSigmoid()
|
||||
input_shape = torch.Size([1, 3, 64, 64])
|
||||
input = torch.randn(input_shape)
|
||||
@ -15,3 +21,16 @@ def test_hsigmoid():
|
||||
assert output.shape == expected_output.shape
|
||||
# test output value
|
||||
assert torch.equal(output, expected_output)
|
||||
|
||||
# test with designated parameters
|
||||
act = HSigmoid(3, 6, 0, 1)
|
||||
input_shape = torch.Size([1, 3, 64, 64])
|
||||
input = torch.randn(input_shape)
|
||||
output = act(input)
|
||||
expected_output = torch.min(
|
||||
torch.max((input + 3) / 6, torch.zeros(input_shape)),
|
||||
torch.ones(input_shape))
|
||||
# test output shape
|
||||
assert output.shape == expected_output.shape
|
||||
# test output value
|
||||
assert torch.equal(output, expected_output)
|
||||
|
Loading…
x
Reference in New Issue
Block a user