# Copyright (c) OpenMMLab. All rights reserved. import numpy as np import pytest import torch from mmcv.utils import IS_CUDA_AVAILABLE, IS_MLU_AVAILABLE, IS_NPU_AVAILABLE class TestNmsRotated: @pytest.mark.parametrize('device', [ pytest.param( 'npu', marks=pytest.mark.skipif( not IS_NPU_AVAILABLE, reason='requires NPU support')), pytest.param( 'cuda', marks=pytest.mark.skipif( not IS_CUDA_AVAILABLE, reason='requires CUDA support')), pytest.param( 'mlu', marks=pytest.mark.skipif( not IS_MLU_AVAILABLE, reason='requires MLU support')) ]) def test_ml_nms_rotated(self, device): from mmcv.ops import nms_rotated np_boxes = np.array( [[6.0, 3.0, 8.0, 7.0, 0.5, 0.7], [3.0, 6.0, 9.0, 11.0, 0.6, 0.8], [3.0, 7.0, 10.0, 12.0, 0.3, 0.5], [1.0, 4.0, 13.0, 7.0, 0.6, 0.9] ], dtype=np.float32) np_labels = np.array([1, 0, 1, 0], dtype=np.float32) np_expect_dets = np.array( [[1.0, 4.0, 13.0, 7.0, 0.6], [3.0, 6.0, 9.0, 11.0, 0.6], [6.0, 3.0, 8.0, 7.0, 0.5]], dtype=np.float32) np_expect_keep_inds = np.array([3, 1, 0], dtype=np.int64) boxes = torch.from_numpy(np_boxes).to(device) labels = torch.from_numpy(np_labels).to(device) # test cw angle definition dets, keep_inds = nms_rotated(boxes[:, :5], boxes[:, -1], 0.5, labels) assert np.allclose(dets.cpu().numpy()[:, :5], np_expect_dets) assert np.allclose(keep_inds.cpu().numpy(), np_expect_keep_inds) # test ccw angle definition boxes[..., -2] *= -1 dets, keep_inds = nms_rotated( boxes[:, :5], boxes[:, -1], 0.5, labels, clockwise=False) dets[..., -2] *= -1 assert np.allclose(dets.cpu().numpy()[:, :5], np_expect_dets) assert np.allclose(keep_inds.cpu().numpy(), np_expect_keep_inds) @pytest.mark.parametrize('device', [ pytest.param( 'npu', marks=pytest.mark.skipif( not IS_NPU_AVAILABLE, reason='requires NPU support')), pytest.param( 'cuda', marks=pytest.mark.skipif( not IS_CUDA_AVAILABLE, reason='requires CUDA support')), pytest.param( 'mlu', marks=pytest.mark.skipif( not IS_MLU_AVAILABLE, reason='requires MLU support')) ]) def test_nms_rotated(self, device): from mmcv.ops import nms_rotated np_boxes = np.array( [[6.0, 3.0, 8.0, 7.0, 0.5, 0.7], [3.0, 6.0, 9.0, 11.0, 0.6, 0.8], [3.0, 7.0, 10.0, 12.0, 0.3, 0.5], [1.0, 4.0, 13.0, 7.0, 0.6, 0.9] ], dtype=np.float32) np_expect_dets = np.array( [[1.0, 4.0, 13.0, 7.0, 0.6], [3.0, 6.0, 9.0, 11.0, 0.6], [6.0, 3.0, 8.0, 7.0, 0.5]], dtype=np.float32) np_expect_keep_inds = np.array([3, 1, 0], dtype=np.int64) boxes = torch.from_numpy(np_boxes).to(device) # test cw angle definition dets, keep_inds = nms_rotated(boxes[:, :5], boxes[:, -1], 0.5) assert np.allclose(dets.cpu().numpy()[:, :5], np_expect_dets) assert np.allclose(keep_inds.cpu().numpy(), np_expect_keep_inds) # test ccw angle definition boxes[..., -2] *= -1 dets, keep_inds = nms_rotated( boxes[:, :5], boxes[:, -1], 0.5, clockwise=False) dets[..., -2] *= -1 assert np.allclose(dets.cpu().numpy()[:, :5], np_expect_dets) assert np.allclose(keep_inds.cpu().numpy(), np_expect_keep_inds) def test_batched_nms(self): # test batched_nms with nms_rotated from mmcv.ops import batched_nms np_boxes = np.array( [[6.0, 3.0, 8.0, 7.0, 0.5, 0.7], [3.0, 6.0, 9.0, 11.0, 0.6, 0.8], [3.0, 7.0, 10.0, 12.0, 0.3, 0.5], [1.0, 4.0, 13.0, 7.0, 0.6, 0.9] ], dtype=np.float32) np_labels = np.array([1, 0, 1, 0], dtype=np.float32) np_expect_agnostic_dets = np.array( [[1.0, 4.0, 13.0, 7.0, 0.6], [3.0, 6.0, 9.0, 11.0, 0.6], [6.0, 3.0, 8.0, 7.0, 0.5]], dtype=np.float32) np_expect_agnostic_keep_inds = np.array([3, 1, 0], dtype=np.int64) np_expect_dets = np.array( [[1.0, 4.0, 13.0, 7.0, 0.6], [3.0, 6.0, 9.0, 11.0, 0.6], [6.0, 3.0, 8.0, 7.0, 0.5], [3.0, 7.0, 10.0, 12.0, 0.3]], dtype=np.float32) np_expect_keep_inds = np.array([3, 1, 0, 2], dtype=np.int64) nms_cfg = dict(type='nms_rotated', iou_threshold=0.5) # test class_agnostic is True boxes, keep = batched_nms( torch.from_numpy(np_boxes[:, :5]), torch.from_numpy(np_boxes[:, -1]), torch.from_numpy(np_labels), nms_cfg, class_agnostic=True) assert np.allclose(boxes.cpu().numpy()[:, :5], np_expect_agnostic_dets) assert np.allclose(keep.cpu().numpy(), np_expect_agnostic_keep_inds) # test class_agnostic is False boxes, keep = batched_nms( torch.from_numpy(np_boxes[:, :5]), torch.from_numpy(np_boxes[:, -1]), torch.from_numpy(np_labels), nms_cfg, class_agnostic=False) assert np.allclose(boxes.cpu().numpy()[:, :5], np_expect_dets) assert np.allclose(keep.cpu().numpy(), np_expect_keep_inds)