# Copyright (c) Open-MMLab. All rights reserved. import os.path as osp import tempfile import warnings from mock import MagicMock def test_save_checkpoint(): try: import torch from torch import nn except ImportError: warnings.warn('Skipping test_save_checkpoint in the absense of torch') return import mmcv.runner model = nn.Linear(1, 1) runner = mmcv.runner.Runner(model=model, batch_processor=lambda x: x) with tempfile.TemporaryDirectory() as root: runner.save_checkpoint(root) latest_path = osp.join(root, 'latest.pth') epoch1_path = osp.join(root, 'epoch_1.pth') assert osp.exists(latest_path) assert osp.exists(epoch1_path) assert osp.realpath(latest_path) == epoch1_path torch.load(latest_path) def test_wandb_hook(): try: import torch import torch.nn as nn from torch.utils.data import DataLoader except ImportError: warnings.warn('Skipping test_save_checkpoint in the absense of torch') return import mmcv.runner wandb_mock = MagicMock() hook = mmcv.runner.hooks.WandbLoggerHook() hook.wandb = wandb_mock loader = DataLoader(torch.ones((5, 5))) model = nn.Linear(1, 1) runner = mmcv.runner.Runner( model=model, batch_processor=lambda model, x, **kwargs: { 'log_vars': { "accuracy": 0.98 }, 'num_samples': 5 }) runner.register_hook(hook) runner.run([loader, loader], [('train', 1), ('val', 1)], 1) wandb_mock.init.assert_called() wandb_mock.log.assert_called_with({'accuracy/val': 0.98}, step=5) wandb_mock.join.assert_called()