## TensorRT Custom Ops
- [TensorRT Custom Ops](#tensorrt-custom-ops)
- [MMCVRoIAlign](#mmcvroialign)
- [Description](#description)
- [Parameters](#parameters)
- [Inputs](#inputs)
- [Outputs](#outputs)
- [Type Constraints](#type-constraints)
- [ScatterND](#scatternd)
- [Description](#description-1)
- [Parameters](#parameters-1)
- [Inputs](#inputs-1)
- [Outputs](#outputs-1)
- [Type Constraints](#type-constraints-1)
- [NonMaxSuppression](#nonmaxsuppression)
- [Description](#description-2)
- [Parameters](#parameters-2)
- [Inputs](#inputs-2)
- [Outputs](#outputs-2)
- [Type Constraints](#type-constraints-2)
- [MMCVDeformConv2d](#mmcvdeformconv2d)
- [Description](#description-3)
- [Parameters](#parameters-3)
- [Inputs](#inputs-3)
- [Outputs](#outputs-3)
- [Type Constraints](#type-constraints-3)
- [grid_sampler](#grid_sampler)
- [Description](#description-4)
- [Parameters](#parameters-4)
- [Inputs](#inputs-4)
- [Outputs](#outputs-4)
- [Type Constraints](#type-constraints-4)
- [cummax](#cummax)
- [Description](#description-5)
- [Parameters](#parameters-5)
- [Inputs](#inputs-5)
- [Outputs](#outputs-5)
- [Type Constraints](#type-constraints-5)
- [cummin](#cummin)
- [Description](#description-6)
- [Parameters](#parameters-6)
- [Inputs](#inputs-6)
- [Outputs](#outputs-6)
- [Type Constraints](#type-constraints-6)
- [MMCVInstanceNormalization](#mmcvinstancenormalization)
- [Description](#description-7)
- [Parameters](#parameters-7)
- [Inputs](#inputs-7)
- [Outputs](#outputs-7)
- [Type Constraints](#type-constraints-7)
- [MMCVModulatedDeformConv2d](#mmcvmodulateddeformconv2d)
- [Description](#description-8)
- [Parameters](#parameters-8)
- [Inputs](#inputs-8)
- [Outputs](#outputs-8)
- [Type Constraints](#type-constraints-8)
### MMCVRoIAlign
#### Description
Perform RoIAlign on output feature, used in bbox_head of most two stage
detectors.
#### Parameters
| Type | Parameter | Description |
| ------- | ---------------- | ------------------------------------------------------------------------------------------------------------- |
| `int` | `output_height` | height of output roi |
| `int` | `output_width` | width of output roi |
| `float` | `spatial_scale` | used to scale the input boxes |
| `int` | `sampling_ratio` | number of input samples to take for each output sample. `0` means to take samples densely for current models. |
| `str` | `mode` | pooling mode in each bin. `avg` or `max` |
| `int` | `aligned` | If `aligned=0`, use the legacy implementation in MMDetection. Else, align the results more perfectly. |
#### Inputs
- inputs[0]: T
- Input feature map; 4D tensor of shape (N, C, H, W), where N is the batch size, C is the numbers of channels, H and W are the height and width of the data.
- inputs[1]: T
- RoIs (Regions of Interest) to pool over; 2-D tensor of shape (num_rois, 5) given as [[batch_index, x1, y1, x2, y2], ...]. The RoIs' coordinates are the coordinate system of inputs[0].
#### Outputs
- outputs[0]: T
- RoI pooled output, 4-D tensor of shape (num_rois, C, output_height, output_width). The r-th batch element output[0][r-1] is a pooled feature map corresponding to the r-th RoI inputs[1][r-1].
-
#### Type Constraints
- T:tensor(float32, Linear)
### ScatterND
#### Description
ScatterND takes three inputs `data` tensor of rank r >= 1, `indices` tensor of rank q >= 1, and `updates` tensor of rank q + r - indices.shape\[-1\] - 1. The output of the operation is produced by creating a copy of the input `data`, and then updating its value to values specified by updates at specific index positions specified by `indices`. Its output shape is the same as the shape of `data`. Note that `indices` should not have duplicate entries. That is, two or more updates for the same index-location is not supported.
The `output` is calculated via the following equation:
```python
output = np.copy(data)
update_indices = indices.shape[:-1]
for idx in np.ndindex(update_indices):
output[indices[idx]] = updates[idx]
```
#### Parameters
None
#### Inputs
- inputs[0]: T
- Tensor of rank r>=1.
- inputs[1]: tensor(int32, Linear)
- Tensor of rank q>=1.
- inputs[2]: T
- Tensor of rank q + r - indices_shape[-1] - 1.
#### Outputs
- outputs[0]: T
- Tensor of rank r >= 1.
#### Type Constraints
- T:tensor(float32, Linear), tensor(int32, Linear)
### NonMaxSuppression
#### Description
Filter out boxes has high IoU overlap with previously selected boxes or low score. Output the indices of valid boxes. Indices of invalid boxes will be filled with -1.
#### Parameters
| Type | Parameter | Description |
| ------- | ---------------------------- | ------------------------------------------------------------------------------------------------------------------------------------ |
| `int` | `center_point_box` | 0 - the box data is supplied as \[y1, x1, y2, x2\], 1-the box data is supplied as \[x_center, y_center, width, height\]. |
| `int` | `max_output_boxes_per_class` | The maximum number of boxes to be selected per batch per class. Default to 0, number of output boxes equal to number of input boxes. |
| `float` | `iou_threshold` | The threshold for deciding whether boxes overlap too much with respect to IoU. Value range \[0, 1\]. Default to 0. |
| `float` | `score_threshold` | The threshold for deciding when to remove boxes based on score. |
| `int` | `offset` | 0 or 1, boxes' width or height is (x2 - x1 + offset). |
#### Inputs
- inputs[0]: T
- Input boxes. 3-D tensor of shape (num_batches, spatial_dimension, 4).
- inputs[1]: T
- Input scores. 3-D tensor of shape (num_batches, num_classes, spatial_dimension).
#### Outputs
- outputs[0]: tensor(int32, Linear)
- Selected indices. 2-D tensor of shape (num_selected_indices, 3) as [[batch_index, class_index, box_index], ...].
- num_selected_indices=num_batches* num_classes* min(max_output_boxes_per_class, spatial_dimension).
- All invalid indices will be filled with -1.
#### Type Constraints
- T:tensor(float32, Linear)
### MMCVDeformConv2d
#### Description
Perform Deformable Convolution on input feature, read [Deformable Convolutional Network](https://arxiv.org/abs/1703.06211) for detail.
#### Parameters
| Type | Parameter | Description |
| -------------- | ------------------ | --------------------------------------------------------------------------------------------------------------------------------- |
| `list of ints` | `stride` | The stride of the convolving kernel. (sH, sW) |
| `list of ints` | `padding` | Paddings on both sides of the input. (padH, padW) |
| `list of ints` | `dilation` | The spacing between kernel elements. (dH, dW) |
| `int` | `deformable_group` | Groups of deformable offset. |
| `int` | `group` | Split input into groups. `input_channel` should be divisible by the number of groups. |
| `int` | `im2col_step` | DeformableConv2d use im2col to compute convolution. im2col_step is used to split input and offset, reduce memory usage of column. |
#### Inputs
- inputs[0]: T
- Input feature; 4-D tensor of shape (N, C, inH, inW), where N is the batch size, C is the numbers of channels, inH and inW are the height and width of the data.
- inputs[1]: T
- Input offset; 4-D tensor of shape (N, deformable_group* 2* kH* kW, outH, outW), where kH and kW is the height and width of weight, outH and outW is the height and width of offset and output.
- inputs[2]: T
- Input weight; 4-D tensor of shape (output_channel, input_channel, kH, kW).
#### Outputs
- outputs[0]: T
- Output feature; 4-D tensor of shape (N, output_channel, outH, outW).
#### Type Constraints
- T:tensor(float32, Linear)
### grid_sampler
#### Description
Perform sample from `input` with pixel locations from `grid`.
#### Parameters
| Type | Parameter | Description |
| ----- | -------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `int` | `interpolation_mode` | Interpolation mode to calculate output values. (0: `bilinear` , 1: `nearest`) |
| `int` | `padding_mode` | Padding mode for outside grid values. (0: `zeros`, 1: `border`, 2: `reflection`) |
| `int` | `align_corners` | If `align_corners=1`, the extrema (`-1` and `1`) are considered as referring to the center points of the input's corner pixels. If `align_corners=0`, they are instead considered as referring to the corner points of the input's corner pixels, making the sampling more resolution agnostic. |
#### Inputs
- inputs[0]: T
- Input feature; 4-D tensor of shape (N, C, inH, inW), where N is the batch size, C is the numbers of channels, inH and inW are the height and width of the data.
- inputs[1]: T
- Input offset; 4-D tensor of shape (N, outH, outW, 2), where outH and outW is the height and width of offset and output.
#### Outputs
- outputs[0]: T
- Output feature; 4-D tensor of shape (N, C, outH, outW).
#### Type Constraints
- T:tensor(float32, Linear)
### cummax
#### Description
Returns a namedtuple (`values`, `indices`) where `values` is the cumulative maximum of elements of `input` in the dimension `dim`. And `indices` is the index location of each maximum value found in the dimension `dim`.
#### Parameters
| Type | Parameter | Description |
| ----- | --------- | --------------------------------------- |
| `int` | `dim` | The dimension to do the operation over. |
#### Inputs
- inputs[0]: T
- The input tensor.
#### Outputs
- outputs[0]: T
- Output values.
- outputs[1]: (int32, Linear)
- Output indices.
#### Type Constraints
- T:tensor(float32, Linear)
### cummin
#### Description
Returns a namedtuple (`values`, `indices`) where `values` is the cumulative minimum of elements of `input` in the dimension `dim`. And `indices` is the index location of each minimum value found in the dimension `dim`.
#### Parameters
| Type | Parameter | Description |
| ----- | --------- | --------------------------------------- |
| `int` | `dim` | The dimension to do the operation over. |
#### Inputs
- inputs[0]: T
- The input tensor.
#### Outputs
- outputs[0]: T
- Output values.
- outputs[1]: (int32, Linear)
- Output indices.
#### Type Constraints
- T:tensor(float32, Linear)
### MMCVInstanceNormalization
#### Description
Carries out instance normalization as described in the paper https://arxiv.org/abs/1607.08022.
y = scale * (x - mean) / sqrt(variance + epsilon) + B, where mean and variance are computed per instance per channel.
#### Parameters
| Type | Parameter | Description |
| ------- | --------- | -------------------------------------------------------------------- |
| `float` | `epsilon` | The epsilon value to use to avoid division by zero. Default is 1e-05 |
#### Inputs
- input: T
- Input data tensor from the previous operator; dimensions for image case are (N x C x H x W), where N is the batch size, C is the number of channels, and H and W are the height and the width of the data. For non image case, the dimensions are in the form of (N x C x D1 x D2 ... Dn), where N is the batch size.
- scale: T
- The input 1-dimensional scale tensor of size C.
- B: T
- The input 1-dimensional bias tensor of size C.
#### Outputs
- output: T
- The output tensor of the same shape as input.
#### Type Constraints
- T:tensor(float32, Linear)
### MMCVModulatedDeformConv2d
#### Description
Perform Modulated Deformable Convolution on input feature, read [Deformable ConvNets v2: More Deformable, Better Results](https://arxiv.org/abs/1811.11168?from=timeline) for detail.
#### Parameters
| Type | Parameter | Description |
| -------------- | ------------------ | ------------------------------------------------------------------------------------- |
| `list of ints` | `stride` | The stride of the convolving kernel. (sH, sW) |
| `list of ints` | `padding` | Paddings on both sides of the input. (padH, padW) |
| `list of ints` | `dilation` | The spacing between kernel elements. (dH, dW) |
| `int` | `deformable_group` | Groups of deformable offset. |
| `int` | `group` | Split input into groups. `input_channel` should be divisible by the number of groups. |
#### Inputs
- inputs[0]: T
- Input feature; 4-D tensor of shape (N, C, inH, inW), where N is the batch size, C is the number of channels, inH and inW are the height and width of the data.
- inputs[1]: T
- Input offset; 4-D tensor of shape (N, deformable_group* 2* kH* kW, outH, outW), where kH and kW is the height and width of weight, outH and outW is the height and width of offset and output.
- inputs[2]: T
- Input mask; 4-D tensor of shape (N, deformable_group* kH* kW, outH, outW), where kH and kW is the height and width of weight, outH and outW is the height and width of offset and output.
- inputs[3]: T
- Input weight; 4-D tensor of shape (output_channel, input_channel, kH, kW).
- inputs[4]: T, optional
- Input weight; 1-D tensor of shape (output_channel).
#### Outputs
- outputs[0]: T
- Output feature; 4-D tensor of shape (N, output_channel, outH, outW).
#### Type Constraints
- T:tensor(float32, Linear)