## TensorRT Custom Ops - [TensorRT Custom Ops](#tensorrt-custom-ops) - [MMCVRoIAlign](#mmcvroialign) - [Description](#description) - [Parameters](#parameters) - [Inputs](#inputs) - [Outputs](#outputs) - [Type Constraints](#type-constraints) - [ScatterND](#scatternd) - [Description](#description-1) - [Parameters](#parameters-1) - [Inputs](#inputs-1) - [Outputs](#outputs-1) - [Type Constraints](#type-constraints-1) - [NonMaxSuppression](#nonmaxsuppression) - [Description](#description-2) - [Parameters](#parameters-2) - [Inputs](#inputs-2) - [Outputs](#outputs-2) - [Type Constraints](#type-constraints-2) - [MMCVDeformConv2d](#mmcvdeformconv2d) - [Description](#description-3) - [Parameters](#parameters-3) - [Inputs](#inputs-3) - [Outputs](#outputs-3) - [Type Constraints](#type-constraints-3) - [grid_sampler](#grid_sampler) - [Description](#description-4) - [Parameters](#parameters-4) - [Inputs](#inputs-4) - [Outputs](#outputs-4) - [Type Constraints](#type-constraints-4) - [cummax](#cummax) - [Description](#description-5) - [Parameters](#parameters-5) - [Inputs](#inputs-5) - [Outputs](#outputs-5) - [Type Constraints](#type-constraints-5) - [cummin](#cummin) - [Description](#description-6) - [Parameters](#parameters-6) - [Inputs](#inputs-6) - [Outputs](#outputs-6) - [Type Constraints](#type-constraints-6) - [MMCVInstanceNormalization](#mmcvinstancenormalization) - [Description](#description-7) - [Parameters](#parameters-7) - [Inputs](#inputs-7) - [Outputs](#outputs-7) - [Type Constraints](#type-constraints-7) - [MMCVModulatedDeformConv2d](#mmcvmodulateddeformconv2d) - [Description](#description-8) - [Parameters](#parameters-8) - [Inputs](#inputs-8) - [Outputs](#outputs-8) - [Type Constraints](#type-constraints-8) ### MMCVRoIAlign #### Description Perform RoIAlign on output feature, used in bbox_head of most two stage detectors. #### Parameters | Type | Parameter | Description | | ------- | ---------------- | ------------------------------------------------------------------------------------------------------------- | | `int` | `output_height` | height of output roi | | `int` | `output_width` | width of output roi | | `float` | `spatial_scale` | used to scale the input boxes | | `int` | `sampling_ratio` | number of input samples to take for each output sample. `0` means to take samples densely for current models. | | `str` | `mode` | pooling mode in each bin. `avg` or `max` | | `int` | `aligned` | If `aligned=0`, use the legacy implementation in MMDetection. Else, align the results more perfectly. | #### Inputs
inputs[0]: T
Input feature map; 4D tensor of shape (N, C, H, W), where N is the batch size, C is the numbers of channels, H and W are the height and width of the data.
inputs[1]: T
RoIs (Regions of Interest) to pool over; 2-D tensor of shape (num_rois, 5) given as [[batch_index, x1, y1, x2, y2], ...]. The RoIs' coordinates are the coordinate system of inputs[0].
#### Outputs
outputs[0]: T
RoI pooled output, 4-D tensor of shape (num_rois, C, output_height, output_width). The r-th batch element output[0][r-1] is a pooled feature map corresponding to the r-th RoI inputs[1][r-1].
#### Type Constraints - T:tensor(float32, Linear) ### ScatterND #### Description ScatterND takes three inputs `data` tensor of rank r >= 1, `indices` tensor of rank q >= 1, and `updates` tensor of rank q + r - indices.shape\[-1\] - 1. The output of the operation is produced by creating a copy of the input `data`, and then updating its value to values specified by updates at specific index positions specified by `indices`. Its output shape is the same as the shape of `data`. Note that `indices` should not have duplicate entries. That is, two or more updates for the same index-location is not supported. The `output` is calculated via the following equation: ```python output = np.copy(data) update_indices = indices.shape[:-1] for idx in np.ndindex(update_indices): output[indices[idx]] = updates[idx] ``` #### Parameters None #### Inputs
inputs[0]: T
Tensor of rank r>=1.
inputs[1]: tensor(int32, Linear)
Tensor of rank q>=1.
inputs[2]: T
Tensor of rank q + r - indices_shape[-1] - 1.
#### Outputs
outputs[0]: T
Tensor of rank r >= 1.
#### Type Constraints - T:tensor(float32, Linear), tensor(int32, Linear) ### NonMaxSuppression #### Description Filter out boxes has high IoU overlap with previously selected boxes or low score. Output the indices of valid boxes. Indices of invalid boxes will be filled with -1. #### Parameters | Type | Parameter | Description | | ------- | ---------------------------- | ------------------------------------------------------------------------------------------------------------------------------------ | | `int` | `center_point_box` | 0 - the box data is supplied as \[y1, x1, y2, x2\], 1-the box data is supplied as \[x_center, y_center, width, height\]. | | `int` | `max_output_boxes_per_class` | The maximum number of boxes to be selected per batch per class. Default to 0, number of output boxes equal to number of input boxes. | | `float` | `iou_threshold` | The threshold for deciding whether boxes overlap too much with respect to IoU. Value range \[0, 1\]. Default to 0. | | `float` | `score_threshold` | The threshold for deciding when to remove boxes based on score. | | `int` | `offset` | 0 or 1, boxes' width or height is (x2 - x1 + offset). | #### Inputs
inputs[0]: T
Input boxes. 3-D tensor of shape (num_batches, spatial_dimension, 4).
inputs[1]: T
Input scores. 3-D tensor of shape (num_batches, num_classes, spatial_dimension).
#### Outputs
outputs[0]: tensor(int32, Linear)
Selected indices. 2-D tensor of shape (num_selected_indices, 3) as [[batch_index, class_index, box_index], ...].
num_selected_indices=num_batches* num_classes* min(max_output_boxes_per_class, spatial_dimension).
All invalid indices will be filled with -1.
#### Type Constraints - T:tensor(float32, Linear) ### MMCVDeformConv2d #### Description Perform Deformable Convolution on input feature, read [Deformable Convolutional Network](https://arxiv.org/abs/1703.06211) for detail. #### Parameters | Type | Parameter | Description | | -------------- | ------------------ | --------------------------------------------------------------------------------------------------------------------------------- | | `list of ints` | `stride` | The stride of the convolving kernel. (sH, sW) | | `list of ints` | `padding` | Paddings on both sides of the input. (padH, padW) | | `list of ints` | `dilation` | The spacing between kernel elements. (dH, dW) | | `int` | `deformable_group` | Groups of deformable offset. | | `int` | `group` | Split input into groups. `input_channel` should be divisible by the number of groups. | | `int` | `im2col_step` | DeformableConv2d use im2col to compute convolution. im2col_step is used to split input and offset, reduce memory usage of column. | #### Inputs
inputs[0]: T
Input feature; 4-D tensor of shape (N, C, inH, inW), where N is the batch size, C is the numbers of channels, inH and inW are the height and width of the data.
inputs[1]: T
Input offset; 4-D tensor of shape (N, deformable_group* 2* kH* kW, outH, outW), where kH and kW is the height and width of weight, outH and outW is the height and width of offset and output.
inputs[2]: T
Input weight; 4-D tensor of shape (output_channel, input_channel, kH, kW).
#### Outputs
outputs[0]: T
Output feature; 4-D tensor of shape (N, output_channel, outH, outW).
#### Type Constraints - T:tensor(float32, Linear) ### grid_sampler #### Description Perform sample from `input` with pixel locations from `grid`. #### Parameters | Type | Parameter | Description | | ----- | -------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | `int` | `interpolation_mode` | Interpolation mode to calculate output values. (0: `bilinear` , 1: `nearest`) | | `int` | `padding_mode` | Padding mode for outside grid values. (0: `zeros`, 1: `border`, 2: `reflection`) | | `int` | `align_corners` | If `align_corners=1`, the extrema (`-1` and `1`) are considered as referring to the center points of the input's corner pixels. If `align_corners=0`, they are instead considered as referring to the corner points of the input's corner pixels, making the sampling more resolution agnostic. | #### Inputs
inputs[0]: T
Input feature; 4-D tensor of shape (N, C, inH, inW), where N is the batch size, C is the numbers of channels, inH and inW are the height and width of the data.
inputs[1]: T
Input offset; 4-D tensor of shape (N, outH, outW, 2), where outH and outW is the height and width of offset and output.
#### Outputs
outputs[0]: T
Output feature; 4-D tensor of shape (N, C, outH, outW).
#### Type Constraints - T:tensor(float32, Linear) ### cummax #### Description Returns a namedtuple (`values`, `indices`) where `values` is the cumulative maximum of elements of `input` in the dimension `dim`. And `indices` is the index location of each maximum value found in the dimension `dim`. #### Parameters | Type | Parameter | Description | | ----- | --------- | --------------------------------------- | | `int` | `dim` | The dimension to do the operation over. | #### Inputs
inputs[0]: T
The input tensor.
#### Outputs
outputs[0]: T
Output values.
outputs[1]: (int32, Linear)
Output indices.
#### Type Constraints - T:tensor(float32, Linear) ### cummin #### Description Returns a namedtuple (`values`, `indices`) where `values` is the cumulative minimum of elements of `input` in the dimension `dim`. And `indices` is the index location of each minimum value found in the dimension `dim`. #### Parameters | Type | Parameter | Description | | ----- | --------- | --------------------------------------- | | `int` | `dim` | The dimension to do the operation over. | #### Inputs
inputs[0]: T
The input tensor.
#### Outputs
outputs[0]: T
Output values.
outputs[1]: (int32, Linear)
Output indices.
#### Type Constraints - T:tensor(float32, Linear) ### MMCVInstanceNormalization #### Description Carries out instance normalization as described in the paper https://arxiv.org/abs/1607.08022. y = scale * (x - mean) / sqrt(variance + epsilon) + B, where mean and variance are computed per instance per channel. #### Parameters | Type | Parameter | Description | | ------- | --------- | -------------------------------------------------------------------- | | `float` | `epsilon` | The epsilon value to use to avoid division by zero. Default is 1e-05 | #### Inputs
input: T
Input data tensor from the previous operator; dimensions for image case are (N x C x H x W), where N is the batch size, C is the number of channels, and H and W are the height and the width of the data. For non image case, the dimensions are in the form of (N x C x D1 x D2 ... Dn), where N is the batch size.
scale: T
The input 1-dimensional scale tensor of size C.
B: T
The input 1-dimensional bias tensor of size C.
#### Outputs
output: T
The output tensor of the same shape as input.
#### Type Constraints - T:tensor(float32, Linear) ### MMCVModulatedDeformConv2d #### Description Perform Modulated Deformable Convolution on input feature, read [Deformable ConvNets v2: More Deformable, Better Results](https://arxiv.org/abs/1811.11168?from=timeline) for detail. #### Parameters | Type | Parameter | Description | | -------------- | ------------------ | ------------------------------------------------------------------------------------- | | `list of ints` | `stride` | The stride of the convolving kernel. (sH, sW) | | `list of ints` | `padding` | Paddings on both sides of the input. (padH, padW) | | `list of ints` | `dilation` | The spacing between kernel elements. (dH, dW) | | `int` | `deformable_group` | Groups of deformable offset. | | `int` | `group` | Split input into groups. `input_channel` should be divisible by the number of groups. | #### Inputs
inputs[0]: T
Input feature; 4-D tensor of shape (N, C, inH, inW), where N is the batch size, C is the number of channels, inH and inW are the height and width of the data.
inputs[1]: T
Input offset; 4-D tensor of shape (N, deformable_group* 2* kH* kW, outH, outW), where kH and kW is the height and width of weight, outH and outW is the height and width of offset and output.
inputs[2]: T
Input mask; 4-D tensor of shape (N, deformable_group* kH* kW, outH, outW), where kH and kW is the height and width of weight, outH and outW is the height and width of offset and output.
inputs[3]: T
Input weight; 4-D tensor of shape (output_channel, input_channel, kH, kW).
inputs[4]: T, optional
Input weight; 1-D tensor of shape (output_channel).
#### Outputs
outputs[0]: T
Output feature; 4-D tensor of shape (N, output_channel, outH, outW).
#### Type Constraints - T:tensor(float32, Linear)