# Copyright (c) OpenMMLab. All rights reserved. import numpy as np import pytest import torch from torch.autograd import gradcheck from mmcv.utils import IS_CUDA_AVAILABLE, IS_MLU_AVAILABLE class TestCarafe: def test_carafe_naive_gradcheck(self): if not torch.cuda.is_available(): return from mmcv.ops import CARAFENaive feat = torch.randn( 2, 64, 3, 3, requires_grad=True, device='cuda').double() mask = torch.randn( 2, 100, 6, 6, requires_grad=True, device='cuda').sigmoid().double() gradcheck(CARAFENaive(5, 4, 2), (feat, mask), atol=1e-4, eps=1e-4) def test_carafe_gradcheck(self): if not torch.cuda.is_available(): return from mmcv.ops import CARAFE feat = torch.randn( 2, 64, 3, 3, requires_grad=True, device='cuda').double() mask = torch.randn( 2, 100, 6, 6, requires_grad=True, device='cuda').sigmoid().double() gradcheck(CARAFE(5, 4, 2), (feat, mask), atol=1e-4, eps=1e-4) @pytest.mark.parametrize('device', [ pytest.param( 'cuda', marks=pytest.mark.skipif( not IS_CUDA_AVAILABLE, reason='requires CUDA support')), pytest.param( 'mlu', marks=pytest.mark.skipif( not IS_MLU_AVAILABLE, reason='requires MLU support')) ]) def test_carafe_allclose(self, device): try: from mmcv.ops import CARAFE except ModuleNotFoundError: pytest.skip('test requires compilation') np_feat = np.fromfile( 'tests/data/for_carafe/carafe_feat.bin', dtype=np.float32) np_mask = np.fromfile( 'tests/data/for_carafe/carafe_mask.bin', dtype=np.float32) np_output = np.fromfile( 'tests/data/for_carafe/carafe_output.bin', dtype=np.float32) np_feat_grad = np.fromfile( 'tests/data/for_carafe/carafe_feat_grad.bin', dtype=np.float32) np_mask_grad = np.fromfile( 'tests/data/for_carafe/carafe_mask_grad.bin', dtype=np.float32) np_feat = np_feat.reshape((2, 64, 3, 3)) np_mask = np_mask.reshape((2, 100, 6, 6)) np_output = np_output.reshape((2, 64, 6, 6)) np_feat_grad = np_feat_grad.reshape((2, 64, 3, 3)) np_mask_grad = np_mask_grad.reshape((2, 100, 6, 6)) feat = torch.tensor( np_feat, dtype=torch.float, device=device, requires_grad=True) mask = torch.tensor( np_mask, dtype=torch.float, device=device, requires_grad=True) carafe = CARAFE(5, 4, 2) output = carafe(feat, mask) output.backward(torch.ones_like(output)) assert np.allclose( output.data.type(torch.float).cpu().numpy(), np_output, atol=1e-3) assert np.allclose( feat.grad.data.type(torch.float).cpu().numpy(), np_feat_grad, atol=1e-3) assert np.allclose( mask.grad.data.type(torch.float).cpu().numpy(), np_mask_grad, atol=1e-3)