# Copyright (c) OpenMMLab. All rights reserved. import numpy as np import pytest import torch from mmcv.ops import boxes_iou3d, boxes_overlap_bev, nms3d, nms3d_normal from mmcv.utils import IS_CUDA_AVAILABLE, IS_MLU_AVAILABLE, IS_NPU_AVAILABLE @pytest.mark.parametrize('device', [ pytest.param( 'cuda', marks=pytest.mark.skipif( not IS_CUDA_AVAILABLE, reason='requires CUDA support')) ]) def test_boxes_overlap_bev(device): np_boxes1 = np.asarray([[1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 0.0], [2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 0.0], [3.0, 3.0, 3.0, 3.0, 2.0, 2.0, 0.0]], dtype=np.float32) np_boxes2 = np.asarray([[1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 0.0], [1.0, 1.0, 1.0, 2.0, 2.0, 2.0, np.pi / 2], [1.0, 1.0, 1.0, 2.0, 2.0, 2.0, np.pi / 4]], dtype=np.float32) np_expect_overlaps = np.asarray( [[4.0, 4.0, (8 + 8 * 2**0.5) / (3 + 2 * 2**0.5)], [1.0, 1.0, 1.0], [0.0, 0.0, 0.0]], dtype=np.float32) boxes1 = torch.from_numpy(np_boxes1).to(device) boxes2 = torch.from_numpy(np_boxes2).to(device) # test for 3 boxes overlaps = boxes_overlap_bev(boxes1, boxes2) assert np.allclose(overlaps.cpu().numpy(), np_expect_overlaps, atol=1e-4) # test for many boxes boxes2 = boxes2.repeat_interleave(555, 0) overlaps = boxes_overlap_bev(boxes1, boxes2) assert np.allclose( overlaps.cpu().numpy(), np_expect_overlaps.repeat(555, 1), atol=1e-4) @pytest.mark.parametrize('device', [ pytest.param( 'cuda', marks=pytest.mark.skipif( not IS_CUDA_AVAILABLE, reason='requires CUDA support')) ]) def test_boxes_iou3d(device): np_boxes1 = np.asarray([[1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 0.0], [2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 0.0], [3.0, 3.0, 3.0, 3.0, 2.0, 2.0, 0.0]], dtype=np.float32) np_boxes2 = np.asarray([[1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 0.0], [1.0, 1.0, 1.0, 2.0, 2.0, 2.0, np.pi / 2], [1.0, 1.0, 1.0, 2.0, 2.0, 2.0, np.pi / 4]], dtype=np.float32) np_expect_ious = np.asarray( [[1.0, 1.0, 1.0 / 2**0.5], [1.0 / 15, 1.0 / 15, 1.0 / 15], [0.0, 0.0, 0.0]], dtype=np.float32) boxes1 = torch.from_numpy(np_boxes1).to(device) boxes2 = torch.from_numpy(np_boxes2).to(device) ious = boxes_iou3d(boxes1, boxes2) assert np.allclose(ious.cpu().numpy(), np_expect_ious, atol=1e-4) @pytest.mark.parametrize('device', [ pytest.param( 'cuda', marks=pytest.mark.skipif( not IS_CUDA_AVAILABLE, reason='requires CUDA support')), pytest.param( 'mlu', marks=pytest.mark.skipif( not IS_MLU_AVAILABLE, reason='requires MLU support')), pytest.param( 'npu', marks=pytest.mark.skipif( not IS_NPU_AVAILABLE, reason='requires NPU support')) ]) def test_nms3d(device): # test for 5 boxes np_boxes = np.asarray([[1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 0.0], [2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 0.0], [3.0, 3.0, 3.0, 3.0, 2.0, 2.0, 0.3], [3.0, 3.0, 3.0, 3.0, 2.0, 2.0, 0.0], [3.0, 3.2, 3.2, 3.0, 2.0, 2.0, 0.3]], dtype=np.float32) np_scores = np.array([0.6, 0.9, 0.1, 0.2, 0.15], dtype=np.float32) np_inds = np.array([1, 0, 3]) boxes = torch.from_numpy(np_boxes) scores = torch.from_numpy(np_scores) inds = nms3d(boxes.to(device), scores.to(device), iou_threshold=0.3) assert np.allclose(inds.cpu().numpy(), np_inds) # test for many boxes # In the float data type calculation process, float will be converted to # double in CUDA kernel (https://github.com/open-mmlab/mmcv/blob # /master/mmcv/ops/csrc/common/box_iou_rotated_utils.hpp#L61), # always use float in MLU kernel. The difference between the mentioned # above leads to different results. if device != 'mlu': np.random.seed(42) np_boxes = np.random.rand(555, 7).astype(np.float32) np_scores = np.random.rand(555).astype(np.float32) boxes = torch.from_numpy(np_boxes) scores = torch.from_numpy(np_scores) inds = nms3d(boxes.to(device), scores.to(device), iou_threshold=0.3) assert len(inds.cpu().numpy()) == 176 @pytest.mark.parametrize('device', [ pytest.param( 'cuda', marks=pytest.mark.skipif( not IS_CUDA_AVAILABLE, reason='requires CUDA support')), pytest.param( 'npu', marks=pytest.mark.skipif( not IS_NPU_AVAILABLE, reason='requires NPU support')) ]) def test_nms3d_normal(device): # test for 5 boxes np_boxes = np.asarray([[1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 0.0], [2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 0.0], [3.0, 3.0, 3.0, 3.0, 2.0, 2.0, 0.3], [3.0, 3.0, 3.0, 3.0, 2.0, 2.0, 0.0], [3.0, 3.2, 3.2, 3.0, 2.0, 2.0, 0.3]], dtype=np.float32) np_scores = np.array([0.6, 0.9, 0.1, 0.2, 0.15], dtype=np.float32) np_inds = np.array([1, 0, 3]) boxes = torch.from_numpy(np_boxes) scores = torch.from_numpy(np_scores) inds = nms3d_normal(boxes.to(device), scores.to(device), iou_threshold=0.3) assert np.allclose(inds.cpu().numpy(), np_inds) # test for many boxes np.random.seed(42) np_boxes = np.random.rand(555, 7).astype(np.float32) np_scores = np.random.rand(555).astype(np.float32) boxes = torch.from_numpy(np_boxes) scores = torch.from_numpy(np_scores) inds = nms3d_normal(boxes.to(device), scores.to(device), iou_threshold=0.3) assert len(inds.cpu().numpy()) == 148