# model settings model = 'resnet18' # dataset settings data_root = '/mnt/SSD/dataset/cifar10' mean = [0.4914, 0.4822, 0.4465] std = [0.2023, 0.1994, 0.2010] batch_size = 64 # optimizer and learning rate optimizer = dict(type='SGD', lr=0.1, momentum=0.9, weight_decay=5e-4) lr_policy = dict(policy='step', step=2) # runtime settings work_dir = './demo' gpus = range(2) data_workers = 2 # data workers per gpu checkpoint_cfg = dict(interval=1) # save checkpoint at every epoch workflow = [('train', 1), ('val', 1)] max_epoch = 6 resume_from = None load_from = None # logging settings log_level = 'INFO' log_cfg = dict( # log at every 50 iterations interval=50, hooks=[ dict(type='TextLoggerHook'), # dict(type='TensorboardLoggerHook', log_dir=work_dir + '/log'), ])