# Copyright (c) OpenMMLab. All rights reserved. import pytest import torch from mmcv.ops import three_interpolate @pytest.mark.skipif( not torch.cuda.is_available(), reason='requires CUDA support') def test_three_interpolate(): features = torch.tensor([[[2.4350, 4.7516, 4.4995, 2.4350, 2.4350, 2.4350], [3.1236, 2.6278, 3.0447, 3.1236, 3.1236, 3.1236], [2.6732, 2.8677, 2.6436, 2.6732, 2.6732, 2.6732], [0.0124, 7.0150, 7.0199, 0.0124, 0.0124, 0.0124], [0.3207, 0.0000, 0.3411, 0.3207, 0.3207, 0.3207]], [[0.0000, 0.9544, 2.4532, 0.0000, 0.0000, 0.0000], [0.5346, 1.9176, 1.4715, 0.5346, 0.5346, 0.5346], [0.0000, 0.2744, 2.0842, 0.0000, 0.0000, 0.0000], [0.3414, 1.5063, 1.6209, 0.3414, 0.3414, 0.3414], [0.5814, 0.0103, 0.0000, 0.5814, 0.5814, 0.5814]]]).cuda() idx = torch.tensor([[[0, 1, 2], [2, 3, 4], [2, 3, 4], [0, 1, 2], [0, 1, 2], [0, 1, 3]], [[0, 2, 3], [1, 3, 4], [2, 1, 4], [0, 2, 4], [0, 2, 4], [0, 1, 2]]]).int().cuda() weight = torch.tensor([[[3.3333e-01, 3.3333e-01, 3.3333e-01], [1.0000e+00, 5.8155e-08, 2.2373e-08], [1.0000e+00, 1.7737e-08, 1.7356e-08], [3.3333e-01, 3.3333e-01, 3.3333e-01], [3.3333e-01, 3.3333e-01, 3.3333e-01], [3.3333e-01, 3.3333e-01, 3.3333e-01]], [[3.3333e-01, 3.3333e-01, 3.3333e-01], [1.0000e+00, 1.3651e-08, 7.7312e-09], [1.0000e+00, 1.7148e-08, 1.4070e-08], [3.3333e-01, 3.3333e-01, 3.3333e-01], [3.3333e-01, 3.3333e-01, 3.3333e-01], [3.3333e-01, 3.3333e-01, 3.3333e-01]]]).cuda() output = three_interpolate(features, idx, weight) expected_output = torch.tensor([[[ 3.8953e+00, 4.4995e+00, 4.4995e+00, 3.8953e+00, 3.8953e+00, 3.2072e+00 ], [ 2.9320e+00, 3.0447e+00, 3.0447e+00, 2.9320e+00, 2.9320e+00, 2.9583e+00 ], [ 2.7281e+00, 2.6436e+00, 2.6436e+00, 2.7281e+00, 2.7281e+00, 2.7380e+00 ], [ 4.6824e+00, 7.0199e+00, 7.0199e+00, 4.6824e+00, 4.6824e+00, 2.3466e+00 ], [ 2.2060e-01, 3.4110e-01, 3.4110e-01, 2.2060e-01, 2.2060e-01, 2.1380e-01 ]], [[ 8.1773e-01, 9.5440e-01, 2.4532e+00, 8.1773e-01, 8.1773e-01, 1.1359e+00 ], [ 8.4689e-01, 1.9176e+00, 1.4715e+00, 8.4689e-01, 8.4689e-01, 1.3079e+00 ], [ 6.9473e-01, 2.7440e-01, 2.0842e+00, 6.9473e-01, 6.9473e-01, 7.8619e-01 ], [ 7.6789e-01, 1.5063e+00, 1.6209e+00, 7.6789e-01, 7.6789e-01, 1.1562e+00 ], [ 3.8760e-01, 1.0300e-02, 8.3569e-09, 3.8760e-01, 3.8760e-01, 1.9723e-01 ]]]).cuda() assert torch.allclose(output, expected_output, 1e-4)