import numpy as np import pytest import torch @pytest.mark.skipif( not torch.cuda.is_available(), reason='requires CUDA support') class TestBBox(object): def _test_bbox_overlaps(self, dtype=torch.float): from mmcv.ops import bbox_overlaps b1 = torch.tensor([[1.0, 1.0, 3.0, 4.0], [2.0, 2.0, 3.0, 4.0], [7.0, 7.0, 8.0, 8.0]]).cuda().type(dtype) b2 = torch.tensor([[0.0, 2.0, 2.0, 5.0], [2.0, 1.0, 3.0, 3.0]]).cuda().type(dtype) should_output = np.array([[0.33333334, 0.5], [0.2, 0.5], [0.0, 0.0]]) out = bbox_overlaps(b1, b2, offset=1) assert np.allclose(out.cpu().numpy(), should_output, 1e-2) b1 = torch.tensor([[1.0, 1.0, 3.0, 4.0], [2.0, 2.0, 3.0, 4.0]]).cuda().type(dtype) b2 = torch.tensor([[0.0, 2.0, 2.0, 5.0], [2.0, 1.0, 3.0, 3.0]]).cuda().type(dtype) should_output = np.array([0.33333334, 0.5]) out = bbox_overlaps(b1, b2, aligned=True, offset=1) assert np.allclose(out.cpu().numpy(), should_output, 1e-2) b1 = torch.tensor([[0.0, 0.0, 3.0, 3.0]]).cuda().type(dtype) b1 = torch.tensor([[0.0, 0.0, 3.0, 3.0]]).cuda().type(dtype) b2 = torch.tensor([[4.0, 0.0, 5.0, 3.0], [3.0, 0.0, 4.0, 3.0], [2.0, 0.0, 3.0, 3.0], [1.0, 0.0, 2.0, 3.0]]).cuda().type(dtype) should_output = np.array([0, 0.2, 0.5, 0.5]) out = bbox_overlaps(b1, b2, offset=1) assert np.allclose(out.cpu().numpy(), should_output, 1e-2) def test_bbox_overlaps_float(self): self._test_bbox_overlaps(torch.float) def test_bbox_overlaps_half(self): self._test_bbox_overlaps(torch.half)