import os import os.path as osp import tempfile import cv2 import mmcv import numpy as np import pytest from numpy.testing import assert_array_equal, assert_array_almost_equal class TestImage(object): @classmethod def setup_class(cls): # the test img resolution is 400x300 cls.img_path = osp.join(osp.dirname(__file__), 'data/color.jpg') cls.gray_img_path = osp.join( osp.dirname(__file__), 'data/grayscale.jpg') cls.img = cv2.imread(cls.img_path) def assert_img_equal(self, img, ref_img, ratio_thr=0.999): assert img.shape == ref_img.shape assert img.dtype == ref_img.dtype area = ref_img.shape[0] * ref_img.shape[1] diff = np.abs(img.astype('int32') - ref_img.astype('int32')) assert np.sum(diff <= 1) / float(area) > ratio_thr def test_imread(self): img = mmcv.imread(self.img_path) assert img.shape == (300, 400, 3) img = mmcv.imread(self.img_path, 'grayscale') assert img.shape == (300, 400) img = mmcv.imread(self.gray_img_path) assert img.shape == (300, 400, 3) img = mmcv.imread(self.gray_img_path, 'unchanged') assert img.shape == (300, 400) img = mmcv.imread(img) assert_array_equal(img, mmcv.imread(img)) with pytest.raises(TypeError): mmcv.imread(1) def test_imfrombytes(self): with open(self.img_path, 'rb') as f: img_bytes = f.read() img = mmcv.imfrombytes(img_bytes) assert img.shape == (300, 400, 3) def test_imwrite(self): img = mmcv.imread(self.img_path) out_file = osp.join(tempfile.gettempdir(), 'mmcv_test.jpg') mmcv.imwrite(img, out_file) rewrite_img = mmcv.imread(out_file) os.remove(out_file) self.assert_img_equal(img, rewrite_img) def test_bgr2gray(self): in_img = np.random.rand(10, 10, 3).astype(np.float32) out_img = mmcv.bgr2gray(in_img) computed_gray = (in_img[:, :, 0] * 0.114 + in_img[:, :, 1] * 0.587 + in_img[:, :, 2] * 0.299) assert_array_almost_equal(out_img, computed_gray, decimal=4) out_img_3d = mmcv.bgr2gray(in_img, True) assert out_img_3d.shape == (10, 10, 1) assert_array_almost_equal(out_img_3d[..., 0], out_img, decimal=4) def test_gray2bgr(self): in_img = np.random.rand(10, 10).astype(np.float32) out_img = mmcv.gray2bgr(in_img) assert out_img.shape == (10, 10, 3) for i in range(3): assert_array_almost_equal(out_img[..., i], in_img, decimal=4) def test_bgr2rgb(self): in_img = np.random.rand(10, 10, 3).astype(np.float32) out_img = mmcv.bgr2rgb(in_img) assert out_img.shape == in_img.shape assert_array_equal(out_img[..., 0], in_img[..., 2]) assert_array_equal(out_img[..., 1], in_img[..., 1]) assert_array_equal(out_img[..., 2], in_img[..., 0]) def test_rgb2bgr(self): in_img = np.random.rand(10, 10, 3).astype(np.float32) out_img = mmcv.rgb2bgr(in_img) assert out_img.shape == in_img.shape assert_array_equal(out_img[..., 0], in_img[..., 2]) assert_array_equal(out_img[..., 1], in_img[..., 1]) assert_array_equal(out_img[..., 2], in_img[..., 0]) def test_bgr2hsv(self): in_img = np.random.rand(10, 10, 3).astype(np.float32) out_img = mmcv.bgr2hsv(in_img) argmax = in_img.argmax(axis=2) computed_hsv = np.empty_like(in_img, dtype=in_img.dtype) for i in range(in_img.shape[0]): for j in range(in_img.shape[1]): b = in_img[i, j, 0] g = in_img[i, j, 1] r = in_img[i, j, 2] v = max(r, g, b) s = (v - min(r, g, b)) / v if v != 0 else 0 if argmax[i, j] == 0: h = 240 + 60 * (r - g) / (v - min(r, g, b)) elif argmax[i, j] == 1: h = 120 + 60 * (b - r) / (v - min(r, g, b)) else: h = 60 * (g - b) / (v - min(r, g, b)) if h < 0: h += 360 computed_hsv[i, j, :] = [h, s, v] assert_array_almost_equal(out_img, computed_hsv, decimal=2) def test_imresize(self): resized_img = mmcv.imresize(self.img, (1000, 600)) assert resized_img.shape == (600, 1000, 3) resized_img, w_scale, h_scale = mmcv.imresize(self.img, (1000, 600), True) assert (resized_img.shape == (600, 1000, 3) and w_scale == 2.5 and h_scale == 2.0) for mode in ['nearest', 'bilinear', 'bicubic', 'area', 'lanczos']: resized_img = mmcv.imresize( self.img, (1000, 600), interpolation=mode) assert resized_img.shape == (600, 1000, 3) def test_imresize_like(self): a = np.zeros((100, 200, 3)) resized_img = mmcv.imresize_like(self.img, a) assert resized_img.shape == (100, 200, 3) def test_imrescale(self): # rescale by a certain factor resized_img = mmcv.imrescale(self.img, 1.5) assert resized_img.shape == (450, 600, 3) resized_img = mmcv.imrescale(self.img, 0.934) assert resized_img.shape == (280, 374, 3) # rescale by a certain max_size # resize (400, 300) to (max_1000, max_600) resized_img = mmcv.imrescale(self.img, (1000, 600)) assert resized_img.shape == (600, 800, 3) resized_img, scale = mmcv.imrescale( self.img, (1000, 600), return_scale=True) assert resized_img.shape == (600, 800, 3) and scale == 2.0 # resize (400, 300) to (max_200, max_180) resized_img = mmcv.imrescale(self.img, (180, 200)) assert resized_img.shape == (150, 200, 3) resized_img, scale = mmcv.imrescale( self.img, (180, 200), return_scale=True) assert resized_img.shape == (150, 200, 3) and scale == 0.5 # test exceptions with pytest.raises(ValueError): mmcv.imrescale(self.img, -0.5) with pytest.raises(TypeError): mmcv.imrescale(self.img, [100, 100]) def test_imflip(self): # test horizontal flip (color image) img = np.random.rand(80, 60, 3) h, w, c = img.shape flipped_img = mmcv.imflip(img) assert flipped_img.shape == img.shape for i in range(h): for j in range(w): for k in range(c): assert flipped_img[i, j, k] == img[i, w - 1 - j, k] # test vertical flip (color image) flipped_img = mmcv.imflip(img, direction='vertical') assert flipped_img.shape == img.shape for i in range(h): for j in range(w): for k in range(c): assert flipped_img[i, j, k] == img[h - 1 - i, j, k] # test horizontal flip (grayscale image) img = np.random.rand(80, 60) h, w = img.shape flipped_img = mmcv.imflip(img) assert flipped_img.shape == img.shape for i in range(h): for j in range(w): assert flipped_img[i, j] == img[i, w - 1 - j] # test vertical flip (grayscale image) flipped_img = mmcv.imflip(img, direction='vertical') assert flipped_img.shape == img.shape for i in range(h): for j in range(w): assert flipped_img[i, j] == img[h - 1 - i, j] def test_imcrop(self): # yapf: disable bboxes = np.array([[100, 100, 199, 199], # center [0, 0, 150, 100], # left-top corner [250, 200, 399, 299], # right-bottom corner [0, 100, 399, 199], # wide [150, 0, 299, 299]]) # tall # yapf: enable # crop one bbox patch = mmcv.imcrop(self.img, bboxes[0, :]) patches = mmcv.imcrop(self.img, bboxes[[0], :]) assert patch.shape == (100, 100, 3) patch_path = osp.join(osp.dirname(__file__), 'data/patches') ref_patch = np.load(patch_path + '/0.npy') self.assert_img_equal(patch, ref_patch) assert isinstance(patches, list) and len(patches) == 1 self.assert_img_equal(patches[0], ref_patch) # crop with no scaling and padding patches = mmcv.imcrop(self.img, bboxes) assert len(patches) == bboxes.shape[0] for i in range(len(patches)): ref_patch = np.load(patch_path + '/{}.npy'.format(i)) self.assert_img_equal(patches[i], ref_patch) # crop with scaling and no padding patches = mmcv.imcrop(self.img, bboxes, 1.2) for i in range(len(patches)): ref_patch = np.load(patch_path + '/scale_{}.npy'.format(i)) self.assert_img_equal(patches[i], ref_patch) # crop with scaling and padding patches = mmcv.imcrop(self.img, bboxes, 1.2, pad_fill=[255, 255, 0]) for i in range(len(patches)): ref_patch = np.load(patch_path + '/pad_{}.npy'.format(i)) self.assert_img_equal(patches[i], ref_patch) patches = mmcv.imcrop(self.img, bboxes, 1.2, pad_fill=0) for i in range(len(patches)): ref_patch = np.load(patch_path + '/pad0_{}.npy'.format(i)) self.assert_img_equal(patches[i], ref_patch) def test_impad(self): img = np.random.rand(10, 10, 3).astype(np.float32) padded_img = mmcv.impad(img, (15, 12), 0) assert_array_equal(img, padded_img[:10, :10, :]) assert_array_equal( np.zeros((5, 12, 3), dtype='float32'), padded_img[10:, :, :]) assert_array_equal( np.zeros((15, 2, 3), dtype='float32'), padded_img[:, 10:, :]) img = np.random.randint(256, size=(10, 10, 3)).astype('uint8') padded_img = mmcv.impad(img, (15, 12, 3), [100, 110, 120]) assert_array_equal(img, padded_img[:10, :10, :]) assert_array_equal( np.array([100, 110, 120], dtype='uint8') * np.ones( (5, 12, 3), dtype='uint8'), padded_img[10:, :, :]) assert_array_equal( np.array([100, 110, 120], dtype='uint8') * np.ones( (15, 2, 3), dtype='uint8'), padded_img[:, 10:, :]) with pytest.raises(AssertionError): mmcv.impad(img, (15, ), 0) with pytest.raises(AssertionError): mmcv.impad(img, (5, 5), 0) with pytest.raises(AssertionError): mmcv.impad(img, (5, 5), [0, 1]) def test_impad_to_multiple(self): img = np.random.rand(11, 14, 3).astype(np.float32) padded_img = mmcv.impad_to_multiple(img, 4) assert padded_img.shape == (12, 16, 3) img = np.random.rand(20, 12).astype(np.float32) padded_img = mmcv.impad_to_multiple(img, 5) assert padded_img.shape == (20, 15) img = np.random.rand(20, 12).astype(np.float32) padded_img = mmcv.impad_to_multiple(img, 2) assert padded_img.shape == (20, 12) def test_imrotate(self): img = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]).astype(np.uint8) assert_array_equal(mmcv.imrotate(img, 0), img) img_r = np.array([[7, 4, 1], [8, 5, 2], [9, 6, 3]]) assert_array_equal(mmcv.imrotate(img, 90), img_r) img_r = np.array([[3, 6, 9], [2, 5, 8], [1, 4, 7]]) assert_array_equal(mmcv.imrotate(img, -90), img_r) img = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]).astype(np.uint8) img_r = np.array([[0, 6, 2, 0], [0, 7, 3, 0]]) assert_array_equal(mmcv.imrotate(img, 90), img_r) img_r = np.array([[1, 0, 0, 0], [2, 0, 0, 0]]) assert_array_equal(mmcv.imrotate(img, 90, center=(0, 0)), img_r) img_r = np.array([[255, 6, 2, 255], [255, 7, 3, 255]]) assert_array_equal(mmcv.imrotate(img, 90, border_value=255), img_r) img_r = np.array([[5, 1], [6, 2], [7, 3], [8, 4]]) assert_array_equal(mmcv.imrotate(img, 90, auto_bound=True), img_r) with pytest.raises(ValueError): mmcv.imrotate(img, 90, center=(0, 0), auto_bound=True) def test_iminvert(self): img = np.array([[0, 128, 255], [1, 127, 254], [2, 129, 253]], dtype=np.uint8) img_r = np.array([[255, 127, 0], [254, 128, 1], [253, 126, 2]], dtype=np.uint8) assert_array_equal(mmcv.iminvert(img), img_r)