# Copyright (c) OpenMMLab. All rights reserved. import pytest import torch from mmcv.ops import RoIPointPool3d from mmcv.utils import IS_CUDA_AVAILABLE, IS_MLU_AVAILABLE @pytest.mark.parametrize('device', [ pytest.param( 'cuda', marks=pytest.mark.skipif( not IS_CUDA_AVAILABLE, reason='requires CUDA support')), pytest.param( 'mlu', marks=pytest.mark.skipif( not IS_MLU_AVAILABLE, reason='requires MLU support')) ]) @pytest.mark.parametrize('dtype', [ torch.float, torch.half, pytest.param( torch.double, marks=pytest.mark.skipif( IS_MLU_AVAILABLE, reason='MLU does not support for double')) ]) def test_roipoint(device, dtype): points = torch.tensor( [[1, 2, 3.3], [1.2, 2.5, 3.0], [0.8, 2.1, 3.5], [1.6, 2.6, 3.6], [0.8, 1.2, 3.9], [-9.2, 21.0, 18.2], [3.8, 7.9, 6.3], [4.7, 3.5, -12.2], [3.8, 7.6, -2], [-10.6, -12.9, -20], [-16, -18, 9], [-21.3, -52, -5], [0, 0, 0], [6, 7, 8], [-2, -3, -4]], dtype=dtype).unsqueeze(0).to(device) feats = points.clone() rois = torch.tensor([[[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 0.3], [-10.0, 23.0, 16.0, 10, 20, 20, 0.5]]], dtype=dtype).to(device) roipoint_pool3d = RoIPointPool3d(num_sampled_points=4) roi_feat, empty_flag = roipoint_pool3d(points, feats, rois) expected_roi_feat = torch.tensor( [[[[1, 2, 3.3, 1, 2, 3.3], [1.2, 2.5, 3, 1.2, 2.5, 3], [0.8, 2.1, 3.5, 0.8, 2.1, 3.5], [1.6, 2.6, 3.6, 1.6, 2.6, 3.6]], [[-9.2, 21, 18.2, -9.2, 21, 18.2], [-9.2, 21, 18.2, -9.2, 21, 18.2], [-9.2, 21, 18.2, -9.2, 21, 18.2], [-9.2, 21, 18.2, -9.2, 21, 18.2]]] ], dtype=dtype).to(device) expected_empty_flag = torch.tensor([[0, 0]]).int().to(device) assert torch.allclose(roi_feat, expected_roi_feat) assert torch.allclose(empty_flag, expected_empty_flag)