import os import numpy as np import torch _USING_PARROTS = True try: from parrots.autograd import gradcheck except ImportError: from torch.autograd import gradcheck _USING_PARROTS = False cur_dir = os.path.dirname(os.path.abspath(__file__)) inputs = [([[[[1., 2.], [3., 4.]]]], [[0., 0., 0., 1., 1.]]), ([[[[1., 2.], [3., 4.]], [[4., 3.], [2., 1.]]]], [[0., 0., 0., 1., 1.]]), ([[[[1., 2., 5., 6.], [3., 4., 7., 8.], [9., 10., 13., 14.], [11., 12., 15., 16.]]]], [[0., 0., 0., 3., 3.]])] outputs = [([[[[1.0, 1.25], [1.5, 1.75]]]], [[[[3.0625, 0.4375], [0.4375, 0.0625]]]]), ([[[[1.0, 1.25], [1.5, 1.75]], [[4.0, 3.75], [3.5, 3.25]]]], [[[[3.0625, 0.4375], [0.4375, 0.0625]], [[3.0625, 0.4375], [0.4375, 0.0625]]]]), ([[[[1.9375, 4.75], [7.5625, 10.375]]]], [[[[0.47265625, 0.42968750, 0.42968750, 0.04296875], [0.42968750, 0.39062500, 0.39062500, 0.03906250], [0.42968750, 0.39062500, 0.39062500, 0.03906250], [0.04296875, 0.03906250, 0.03906250, 0.00390625]]]])] class TestRoiAlign(object): def test_roialign_gradcheck(self): if not torch.cuda.is_available(): return from mmcv.ops import RoIAlign pool_h = 2 pool_w = 2 spatial_scale = 1.0 sampling_ratio = 2 for case in inputs: np_input = np.array(case[0]) np_rois = np.array(case[1]) x = torch.tensor(np_input, device='cuda', requires_grad=True) rois = torch.tensor(np_rois, device='cuda') froipool = RoIAlign((pool_h, pool_w), spatial_scale, sampling_ratio) if _USING_PARROTS: pass # gradcheck(froipool, (x, rois), no_grads=[rois]) else: gradcheck(froipool, (x, rois), eps=1e-2, atol=1e-2) def _test_roipool_allclose(self, dtype=torch.float): if not torch.cuda.is_available(): return from mmcv.ops import roi_align pool_h = 2 pool_w = 2 spatial_scale = 1.0 sampling_ratio = 2 for case, output in zip(inputs, outputs): np_input = np.array(case[0]) np_rois = np.array(case[1]) np_output = np.array(output[0]) np_grad = np.array(output[1]) x = torch.tensor( np_input, dtype=dtype, device='cuda', requires_grad=True) rois = torch.tensor(np_rois, dtype=dtype, device='cuda') output = roi_align(x, rois, (pool_h, pool_w), spatial_scale, sampling_ratio, 'avg', True) output.backward(torch.ones_like(output)) assert np.allclose( output.data.type(torch.float).cpu().numpy(), np_output, atol=1e-3) assert np.allclose( x.grad.data.type(torch.float).cpu().numpy(), np_grad, atol=1e-3) def test_roipool_allclose(self): self._test_roipool_allclose(torch.float) self._test_roipool_allclose(torch.double) self._test_roipool_allclose(torch.half)