# model settings model = 'resnet18' # dataset settings data_root = '/mnt/SSD/dataset/cifar10' mean = [0.4914, 0.4822, 0.4465] std = [0.2023, 0.1994, 0.2010] batch_size = 64 # optimizer and learning rate optimizer = dict(type='SGD', lr=0.1, momentum=0.9, weight_decay=5e-4) optimizer_config = dict(grad_clip=None) lr_config = dict(policy='step', step=2) # runtime settings work_dir = './demo' gpus = range(2) dist_params = dict(backend='nccl') data_workers = 2 # data workers per gpu checkpoint_config = dict(interval=1) # save checkpoint at every epoch workflow = [('train', 1), ('val', 1)] total_epochs = 6 resume_from = None load_from = None # logging settings log_level = 'INFO' log_config = dict( interval=50, # log at every 50 iterations hooks=[ dict(type='TextLoggerHook'), # dict(type='TensorboardLoggerHook'), ])