import pytest import torch from mmcv.ops import three_nn @pytest.mark.skipif( not torch.cuda.is_available(), reason='requires CUDA support') def test_three_nn(): known = torch.tensor([[[-1.8373, 3.5605, -0.7867], [0.7615, 2.9420, 0.2314], [-0.6503, 3.6637, -1.0622], [-1.8373, 3.5605, -0.7867], [-1.8373, 3.5605, -0.7867]], [[-1.3399, 1.9991, -0.3698], [-0.0799, 0.9698, -0.8457], [0.0858, 2.4721, -0.1928], [-1.3399, 1.9991, -0.3698], [-1.3399, 1.9991, -0.3698]]]).cuda() unknown = torch.tensor([[[-1.8373, 3.5605, -0.7867], [0.7615, 2.9420, 0.2314], [-0.6503, 3.6637, -1.0622], [-1.5237, 2.3976, -0.8097], [-0.0722, 3.4017, -0.2880], [0.5198, 3.0661, -0.4605], [-2.0185, 3.5019, -0.3236], [0.5098, 3.1020, 0.5799], [-1.6137, 3.8443, -0.5269], [0.7341, 2.9626, -0.3189]], [[-1.3399, 1.9991, -0.3698], [-0.0799, 0.9698, -0.8457], [0.0858, 2.4721, -0.1928], [-0.9022, 1.6560, -1.3090], [0.1156, 1.6901, -0.4366], [-0.6477, 2.3576, -0.1563], [-0.8482, 1.1466, -1.2704], [-0.8753, 2.0845, -0.3460], [-0.5621, 1.4233, -1.2858], [-0.5883, 1.3114, -1.2899]]]).cuda() dist, idx = three_nn(unknown, known) expected_dist = torch.tensor([[[0.0000, 0.0000, 0.0000], [0.0000, 2.0463, 2.8588], [0.0000, 1.2229, 1.2229], [1.2047, 1.2047, 1.2047], [1.0011, 1.0845, 1.8411], [0.7433, 1.4451, 2.4304], [0.5007, 0.5007, 0.5007], [0.4587, 2.0875, 2.7544], [0.4450, 0.4450, 0.4450], [0.5514, 1.7206, 2.6811]], [[0.0000, 0.0000, 0.0000], [0.0000, 1.6464, 1.6952], [0.0000, 1.5125, 1.5125], [1.0915, 1.0915, 1.0915], [0.8197, 0.8511, 1.4894], [0.7433, 0.8082, 0.8082], [0.8955, 1.3340, 1.3340], [0.4730, 0.4730, 0.4730], [0.7949, 1.3325, 1.3325], [0.7566, 1.3727, 1.3727]]]).cuda() expected_idx = torch.tensor([[[0, 3, 4], [1, 2, 0], [2, 0, 3], [0, 3, 4], [2, 1, 0], [1, 2, 0], [0, 3, 4], [1, 2, 0], [0, 3, 4], [1, 2, 0]], [[0, 3, 4], [1, 2, 0], [2, 0, 3], [0, 3, 4], [2, 1, 0], [2, 0, 3], [1, 0, 3], [0, 3, 4], [1, 0, 3], [1, 0, 3]]]).cuda() assert torch.allclose(dist, expected_dist, 1e-4) assert torch.all(idx == expected_idx)