# Copyright (c) OpenMMLab. All rights reserved. import numpy as np import pytest import torch from mmcv.utils import IS_CUDA_AVAILABLE class TestBoxIoUQuadri: @pytest.mark.parametrize('device', [ 'cpu', pytest.param( 'cuda', marks=pytest.mark.skipif( not IS_CUDA_AVAILABLE, reason='requires CUDA support')), ]) def test_box_iou_quadri_cuda(self, device): from mmcv.ops import box_iou_quadri np_boxes1 = np.asarray([[1.0, 1.0, 3.0, 4.0, 4.0, 4.0, 4.0, 1.0], [2.0, 2.0, 3.0, 4.0, 4.0, 2.0, 3.0, 1.0], [7.0, 7.0, 8.0, 8.0, 9.0, 7.0, 8.0, 6.0]], dtype=np.float32) np_boxes2 = np.asarray([[0.0, 0.0, 0.0, 2.0, 2.0, 2.0, 2.0, 0.0], [2.0, 1.0, 2.0, 4.0, 4.0, 4.0, 4.0, 1.0], [7.0, 6.0, 7.0, 8.0, 9.0, 8.0, 9.0, 6.0]], dtype=np.float32) np_expect_ious = np.asarray( [[0.0714, 1.0000, 0.0000], [0.0000, 0.5000, 0.0000], [0.0000, 0.0000, 0.5000]], dtype=np.float32) np_expect_ious_aligned = np.asarray([0.0714, 0.5000, 0.5000], dtype=np.float32) boxes1 = torch.from_numpy(np_boxes1).to(device) boxes2 = torch.from_numpy(np_boxes2).to(device) ious = box_iou_quadri(boxes1, boxes2) assert np.allclose(ious.cpu().numpy(), np_expect_ious, atol=1e-4) ious = box_iou_quadri(boxes1, boxes2, aligned=True) assert np.allclose( ious.cpu().numpy(), np_expect_ious_aligned, atol=1e-4) @pytest.mark.parametrize('device', [ 'cpu', pytest.param( 'cuda', marks=pytest.mark.skipif( not IS_CUDA_AVAILABLE, reason='requires CUDA support')), ]) def test_box_iou_quadri_iof_cuda(self, device): from mmcv.ops import box_iou_quadri np_boxes1 = np.asarray([[1.0, 1.0, 3.0, 4.0, 4.0, 4.0, 4.0, 1.0], [2.0, 2.0, 3.0, 4.0, 4.0, 2.0, 3.0, 1.0], [7.0, 7.0, 8.0, 8.0, 9.0, 7.0, 8.0, 6.0]], dtype=np.float32) np_boxes2 = np.asarray([[0.0, 0.0, 0.0, 2.0, 2.0, 2.0, 2.0, 0.0], [2.0, 1.0, 2.0, 4.0, 4.0, 4.0, 4.0, 1.0], [7.0, 6.0, 7.0, 8.0, 9.0, 8.0, 9.0, 6.0]], dtype=np.float32) np_expect_ious = np.asarray( [[0.1111, 1.0000, 0.0000], [0.0000, 1.0000, 0.0000], [0.0000, 0.0000, 1.0000]], dtype=np.float32) np_expect_ious_aligned = np.asarray([0.1111, 1.0000, 1.0000], dtype=np.float32) boxes1 = torch.from_numpy(np_boxes1).to(device) boxes2 = torch.from_numpy(np_boxes2).to(device) ious = box_iou_quadri(boxes1, boxes2, mode='iof') assert np.allclose(ious.cpu().numpy(), np_expect_ious, atol=1e-4) ious = box_iou_quadri(boxes1, boxes2, mode='iof', aligned=True) assert np.allclose( ious.cpu().numpy(), np_expect_ious_aligned, atol=1e-4)