import numpy as np import torch import torch.nn as nn class Loss(nn.Module): def __init__(self): super().__init__() def forward(self, input, target): input = input.view(-1) target = target.view(-1) return torch.mean(input - target) class TestPSAMask(object): def test_psa_mask_collect(self): if not torch.cuda.is_available(): return from mmcv.ops import PSAMask test_loss = Loss() input = np.fromfile( 'tests/data/for_psa_mask/psa_input.bin', dtype=np.float32) output_collect = np.fromfile( 'tests/data/for_psa_mask/psa_output_collect.bin', dtype=np.float32) input = input.reshape((4, 16, 8, 8)) output_collect = output_collect.reshape((4, 64, 8, 8)) label = torch.ones((4, 64, 8, 8)) input = torch.FloatTensor(input) input.requires_grad = True psamask_collect = PSAMask('collect', (4, 4)) # test collect cpu test_output = psamask_collect(input) loss = test_loss(test_output, label) loss.backward() test_output = test_output.detach().numpy() assert np.allclose(test_output, output_collect) assert test_output.shape == output_collect.shape psamask_collect.cuda() input = input.cuda() label = label.cuda() # test collect cuda test_output = psamask_collect(input) loss = test_loss(test_output, label) loss.backward() test_output = test_output.detach().cpu().numpy() assert np.allclose(test_output, output_collect) assert test_output.shape == output_collect.shape def test_psa_mask_distribute(self): if not torch.cuda.is_available(): return from mmcv.ops import PSAMask test_loss = Loss() input = np.fromfile( 'tests/data/for_psa_mask/psa_input.bin', dtype=np.float32) output_distribute = np.fromfile( 'tests/data/for_psa_mask/psa_output_distribute.bin', dtype=np.float32) input = input.reshape((4, 16, 8, 8)) output_distribute = output_distribute.reshape((4, 64, 8, 8)) label = torch.ones((4, 64, 8, 8)) input = torch.FloatTensor(input) input.requires_grad = True psamask_distribute = PSAMask('distribute', (4, 4)) # test distribute cpu test_output = psamask_distribute(input) loss = test_loss(test_output, label) loss.backward() test_output = test_output.detach().numpy() assert np.allclose(test_output, output_distribute) assert test_output.shape == output_distribute.shape psamask_distribute.cuda() input = input.cuda() label = label.cuda() # test distribute cuda test_output = psamask_distribute(input) loss = test_loss(test_output, label) loss.backward() test_output = test_output.detach().cpu().numpy() assert np.allclose(test_output, output_distribute) assert test_output.shape == output_distribute.shape